Akbulut cork

Last updated

In topology, an Akbulut cork is a structure that is frequently used to show that in 4 dimensions, the smooth h-cobordism theorem fails. It was named after Turkish mathematician Selman Akbulut. [1] [2]

A compact contractible Stein 4-manifold with involution on its boundary is called an Akbulut cork, if extends to a self-homeomorphism but cannot extend to a self-diffeomorphism inside (hence a cork is an exotic copy of itself relative to its boundary). A cork is called a cork of a smooth 4-manifold , if removing from and re-gluing it via changes the smooth structure of (this operation is called "cork twisting"). Any exotic copy of a closed simply connected 4-manifold differs from by a single cork twist. [3] [4] [5] [6] [7]

The basic idea of the Akbulut cork is that when attempting to use the h-cobodism theorem in four dimensions, the cork is the sub-cobordism that contains all the exotic properties of the spaces connected with the cobordism, and when removed the two spaces become trivially h-cobordant and smooth. This shows that in four dimensions, although the theorem does not tell us that two manifolds are diffeomorphic (only homeomorphic), they are "not far" from being diffeomorphic. [8]

To illustrate this (without proof), consider a smooth h-cobordism between two 4-manifolds and . Then within there is a sub-cobordism between and and there is a diffeomorphism

which is the content of the h-cobordism theorem for n  5 (here int X refers to the interior of a manifold X). In addition, A and B are diffeomorphic with a diffeomorphism that is an involution on the boundary ∂A = B. [9] Therefore, it can be seen that the h-corbordism K connects A with its "inverted" image B. This submanifold A is the Akbulut cork.

Notes

  1. Gompf, Robert E.; Stipsicz, András I. (1999). 4-manifolds and Kirby calculus. Graduate Studies in Mathematics. Vol. 20. Providence, RI: American Mathematical Society. p. 357. doi:10.1090/gsm/020. ISBN   0-8218-0994-6. MR   1707327.
  2. A.Scorpan, The wild world of 4-manifolds (p.90), AMS Pub. ISBN   0-8218-3749-4
  3. Akbulut, Selman (1991). "A fake compact contractible 4-manifold". Journal of Differential Geometry . 33 (2): 335–356. doi: 10.4310/jdg/1214446320 . MR   1094459.
  4. Matveyev, Rostislav (1996). "A decomposition of smooth simply-connected h-cobordant 4-manifolds". Journal of Differential Geometry . 44 (3): 571–582. arXiv: dg-ga/9505001 . doi:10.4310/jdg/1214459222. MR   1431006. S2CID   15994704.
  5. Curtis, Cynthia L.; Freedman, Michael H.; Hsiang, Wu Chung; Stong, Richard (1996). "A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds". Inventiones Mathematicae . 123 (2): 343–348. doi:10.1007/s002220050031. MR   1374205. S2CID   189819783.
  6. Akbulut, Selman; Matveyev, Rostislav (1998). "A convex decomposition theorem for 4-manifolds". International Mathematics Research Notices . 1998 (7): 371–381. doi: 10.1155/S1073792898000245 . MR   1623402.
  7. Akbulut, Selman; Yasui, Kouichi (2008). "Corks, plugs and exotic structures" (PDF). Journal of Gökova Geometry Topology. 2: 40–82. arXiv: 0806.3010 . MR   2466001.
  8. Asselmeyer-Maluga and Brans, 2007, Exotic Smoothness and Physics
  9. Scorpan, A., 2005 The Wild World of 4-Manifolds

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of differentiable manifolds

In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

<span class="mw-page-title-main">Cobordism</span> Concept in mathematics

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps

<span class="mw-page-title-main">Handle decomposition</span>

In mathematics, a handle decomposition of an m-manifold M is a union where each is obtained from by the attaching of -handles. A handle decomposition is to a manifold what a CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an i-handle is the smooth analogue of an i-cell. Handle decompositions of manifolds arise naturally via Morse theory. The modification of handle structures is closely linked to Cerf theory.

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

In mathematics, an exotic is a differentiable manifold that is homeomorphic but not diffeomorphic to the Euclidean space The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures as was shown first by Clifford Taubes.

In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalizable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix over the integers. The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.

<span class="mw-page-title-main">Selman Akbulut</span> Turkish mathematician (born 1949)

Selman Akbulut is a Turkish mathematician, specializing in research in topology, and geometry. He was a professor at Michigan State University until February 2020.

In mathematics, specifically differential and algebraic topology, during the mid 1950's John Milnorpg 14 was trying to understand the structure of -connected manifolds of dimension and found an example of a space which is homotopy equivalent to a sphere, but was not explicitly diffeomorphic. He did this through looking at real vector bundles over a sphere and studied the properties of the associated disk bundle. It turns out, the boundary of this bundle is homotopically equivalent to a sphere , but in certain cases it is not diffeomorphic. This lack of diffeomorphism comes from studying a hypothetical cobordism between this boundary and a sphere, and showing this hypothetical cobordism invalidates certain properties of the Hirzebruch signature theorem.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor. Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

In 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and Michael Freedman introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds.

In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold-with-boundary which is not diffeomorphic to the standard 4-ball. Usually these manifolds are further required to have a handle decomposition with a single -handle, and a single -handle; otherwise, they would simply be called contractible manifolds. The boundary of a Mazur manifold is necessarily a homology 3-sphere.

In mathematics, the surgery structure set is the basic object in the study of manifolds which are homotopy equivalent to a closed manifold X. It is a concept which helps to answer the question whether two homotopy equivalent manifolds are diffeomorphic. There are different versions of the structure set depending on the category and whether Whitehead torsion is taken into account or not.

In mathematics, Dolgachev surfaces are certain simply connected elliptic surfaces, introduced by Igor Dolgachev. They can be used to give examples of an infinite family of homeomorphic simply connected compact 4-manifolds, no two of which are diffeomorphic.

References