Alberto Sirlin

Last updated

Alberto Sirlin (born 25 November 1930, in Buenos Aires, died February 23, 2022, in New York City) was an Argentine theoretical physicist, specializing in particle physics. [1]

Contents

Biography

Sirlin studied from 1948 to 1952 at the University of Buenos Aires, where he received his doctorate in 1953 under the supervision of Richard Gans. In 1953–1954 Sirlin was a fellow at the Centro Brasileiro de Pesquisas Físicas in Rio de Janeiro, where he took several graduate courses, including one taught by Richard Feynman. [2] Sirlin was in 1954–1955 at the University of California at Los Angeles (UCLA) and in 1955–1957 at the Cornell University, where in 1958 he received a doctorate under the supervision of Tōichirō Kinoshita. From 1957 to 1959 he was a research assistant at Columbia University. At New York University he was from 1959 to 1961 an assistant professor, from 1961 to 1968 an associate professor, and from 1968 a full professor, retiring in 2008. [3] [4]

Sirlin did research in the 1950s on radiative corrections in the theory of muon decay, i.e. higher-order corrections in the allowed weak interactions of quantum electrodynamics (QED). [5] In 1960 Sirlin and Ralph E. Behrends discovered the nonrenormalization theorem for partially conserved vector currents in the SU(2) theory of weak interactions and suggested the theorem's generalization to higher symmetry. Their theorem plays an important role in experimentally verifying predictions from the Cabibbo-Kobayashi-Maskawa matrix. [6] Beginning in the 1970s Sirlin did research with his student William J. Marciano on higher-order corrections in leptonic decays. [7] [8] With Tsung-Dao Lee and Richard M. Friedberg, Sirlin did research on non-topological soliton solutions in quantum field theory. [9] [10] [11]

Sirlin was elected a Fellow of the American Physical Society in 1971. [4] He was in the academic year 1983–1984 a Guggenheim Fellow and in 1997 received the Alexander von Humboldt Award. In 2002 Sirlin and William J. Marciano received the Sakurai Prize for their collaborative research on the theory of electroweak interactions. [3]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as

In theoretical physics, Q-ball is a type of non-topological soliton. A soliton is a localized field configuration that is stable—it cannot spread out and dissipate. In the case of a non-topological soliton, the stability is guaranteed by a conserved charge: the soliton has lower energy per unit charge than any other configuration.

<span class="mw-page-title-main">Benjamin W. Lee</span> Korean-born American theoretical physicist

Benjamin Whisoh Lee, or Ben Lee, was a Korean- American theoretical physicist. His work in theoretical particle physics exerted great influence on the development of the standard model in the late 20th century, especially on the renormalization of the electro-weak model and gauge theory.

Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite", can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a N = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper Magnetic monopoles as gauge particles? where they state:

There should be two "dual equivalent" field formulations of the same theory in which electric (Noether) and magnetic (topological) quantum numbers exchange roles.

Erick J. Weinberg is a theoretical physicist and professor of physics at Columbia University.

Tamiaki Yoneya is a Japanese physicist.

In particle physics, the lightest supersymmetric particle (LSP) is the generic name given to the lightest of the additional hypothetical particles found in supersymmetric models. In models with R-parity conservation, the LSP is stable; in other words, it cannot decay into any Standard Model particle, since all SM particles have the opposite R-parity. There is extensive observational evidence for an additional component of the matter density in the universe, which goes under the name dark matter. The LSP of supersymmetric models is a dark matter candidate and is a weakly interacting massive particle (WIMP).

The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.

In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by Gerard 't Hooft and Steven Weinberg in 1973. The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.

<span class="mw-page-title-main">John Iliopoulos</span> Greek physicist

John (Jean) Iliopoulos is a Greek physicist. He is the first person to present the Standard Model of particle physics in a single report. He is best known for his prediction of the charm quark with Sheldon Glashow and Luciano Maiani. Iliopoulos is also known for demonstrating the cancellation of anomalies in the Standard model. He is further known for the Fayet-Iliopoulos D-term formula, which was introduced in 1974. He is currently an honorary member of Laboratory of theoretical physics of École Normale Supérieure, Paris.

<span class="mw-page-title-main">Mikhail Shifman</span> American physicist

Mikhail "Misha" Arkadyevich Shifman is a theoretical physicist, formerly at the Institute for Theoretical and Experimental Physics, Moscow, currently Ida Cohen Fine Professor of Theoretical Physics, William I. Fine Theoretical Physics Institute, University of Minnesota.

<span class="mw-page-title-main">David Callaway</span>

David J. E. Callaway is a biological nanophysicist in the New York University School of Medicine, where he is professor and laboratory director. He was trained as a theoretical physicist by Richard Feynman, Kip Thorne, and Cosmas Zachos, and was previously an associate professor at the Rockefeller University after positions at CERN and Los Alamos National Laboratory. Callaway's laboratory discovered potential therapeutics for Alzheimer's disease based upon apomorphine after an earlier paper of his developed models of Alzheimer amyloid formation. He has also initiated the study of protein domain dynamics by neutron spin echo spectroscopy, providing a way to observe protein nanomachines in motion.

<span class="mw-page-title-main">Renata Kallosh</span> Theoretical physicist

Renata Elizaveta Kallosh is a Russian-American theoretical physicist. She is a professor of physics at Stanford University, working there on supergravity, string theory and inflationary cosmology.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

<span class="mw-page-title-main">Goran Senjanović</span>

Goran Senjanović is a theoretical physicist at the Abdus Salam International Centre for Theoretical Physics (ICTP). He received his Ph.D. at the City College of New York in 1978, under the supervision of Rabindra Mohapatra. Before joining the ICTP in 1991, he worked as a staff member at the Brookhaven National Laboratory and as a professor of physics at the University of Zagreb. His major research interests are neutrino physics, unification of elementary particle forces, baryon and lepton number violation and supersymmetry.

Ramamurti Rajaraman is an emeritus professor of theoretical physics at the School of Physical Sciences at Jawaharlal Nehru University. He was also the co-Chairman of the International Panel on Fissile Materials and a member of the Bulletin of the Atomic Scientists' Science and Security Board. He has taught and conducted research in physics at the Indian Institute of Science, the Institute for Advanced Study at Princeton, and as a visiting professor at Stanford, Harvard, MIT, and elsewhere. He received his doctorate in theoretical physics in 1963 from Cornell University. In addition to his physics publications, Rajaraman has written widely on topics including fissile material production in India and Pakistan and the radiological effects of nuclear weapon accidents.

<span class="mw-page-title-main">Claude Itzykson</span> French theoretical physicist (1938–1995)

Claude Georges Itzykson, was a French theoretical physicist who worked in quantum field theory and statistical mechanics.

William Joseph Marciano is an American theoretical physicist, specializing in elementary particle physics.

References

  1. Porrati, Massimo (2003). "Alberto Sirlin". Journal of Physics G: Nuclear and Particle Physics. 29 (1). doi:10.1088/0954-3899/29/1/003.
  2. Sirlin, Alberto (2015). "Remembering a Great Teacher". arXiv: 1512.08247 [physics.hist-ph].
  3. 1 2 "2002 J.J. Sakurai Prize for Theoretical Particle Physics, AlbertoSirlin". American Physical Society.
  4. 1 2 "Alberto Sirlin". Institute for Advanced Study. 9 December 2019.
  5. Behrends, Ralph E.; Finkelstein, Robert; Sirlin, A. (1955). "Radiative corrections to decay processes". Physical Review. 106 (2): 866–873. Bibcode:1956PhRv..101..866B. doi:10.1103/PhysRev.101.866.
  6. Choudhury, Deo C.; Feinberg, Gerald; Sirlin, Alberto (1 May 1990). "Obituary. Ralph E. Behrends". Physics Today. 43 (5): 98–99. Bibcode:1990PhT....43e..98C. doi: 10.1063/1.2810573 .
  7. Marciano, W.J.; Sirlin, A. (1973). "Deviation from electron-muon universality in the leptonic decays of the intermediate bosons". Physical Review D. 8 (10): 3612–3615. Bibcode:1973PhRvD...8.3612M. doi:10.1103/PhysRevD.8.3612.
  8. Marciano, W.J.; Sirlin, A. (1975). "Dimensional regularization of infrared divergences". Nuclear Physics B. 88 (1): 86–98. Bibcode:1975NuPhB..88...86M. doi:10.1016/0550-3213(75)90527-1.
  9. Friedberg, R.; Lee, T.D.; Sirlin, A. (1976). "Class of scalar-field soliton solutions in three space dimensions". Physical Review D. 13 (10): 2739–2761. Bibcode:1976PhRvD..13.2739F. doi:10.1103/PhysRevD.13.2739.
  10. Friedberg, R.; Lee, T. D.; Sirlin, A. (1976). "Gauge-field non-topological solitons in three space-dimensions (I)". Nuclear Physics B. 115 (1): 1–31. Bibcode:1976NuPhB.115....1F. doi:10.1016/0550-3213(76)90274-1.
  11. Friedberg, R.; Lee, T. D.; Sirlin, A. (1976). "Gauge-field non-topological solitons in three space-dimensions (II)". Nuclear Physics B. 115 (1): 32–47. Bibcode:1976NuPhB.115...32F. doi:10.1016/0550-3213(76)90275-3.