Richard M. Friedberg

Last updated
Richard Friedberg
Born8 October 1935 (1935-10-08) (age 88)
Alma mater Harvard University
Awards William Lowell Putnam Mathematical Competition (1956)
IEEE Evolutionary Computation Pioneer Award (2004) [1]
Scientific career
Fields Physicist
Institutions Barnard College
Columbia University
Doctoral advisor Tsung-Dao Lee

Richard M. Friedberg (born October 8, 1935) is a theoretical physicist who has contributed to a wide variety of problems in mathematics and physics. These include mathematical logic, number theory, solid state physics, general relativity, [2] particle physics, quantum optics, genome research, [3] and the foundations of quantum physics. [4]

Contents

Early life

Friedberg was born in Manhattan on Oct 8, 1935, the child of cardiologist Charles K. Friedberg, and playwright Gertrude Tonkonogy. [5]

Academic work

Friedberg's most well-known work dates back to the mid-1950s. As an undergraduate at Harvard, he published several papers over a period of 2–3 years. The first paper introduced the priority method, a common technique in computability theory, in order to prove the existence of recursively enumerable sets with incomparable degrees of unsolvability. [6] [7] [8] [9]

In 1968, Friedberg proved independently what became known as Bell’s inequality, not knowing that J. S. Bell had proved it a few years earlier. He showed it to the physicist and historian Max Jammer, who somehow managed to insert it into his book “The Conceptual Development of Quantum Mechanics”, [10] although the latter bears the publication date 1966. This caused Friedberg some embarrassment later when classmates at Harvard, knowing of the result only through Jammer’s book, supposed that Friedberg was the first discoverer. (A letter from Friedberg to Jammer dated May 1971 begins, “It was nice of you to remember what I showed you in 1968. I finally got around to writing it up in 1969, but just then I found out about Bell’s 1964 paper (Physics 1, 195) which had anticipated my ‘discovery’ by three years. So I did not publish.”) More recently, Friedberg worked on the foundations of quantum mechanics in collaboration with the late Pierre Hohenberg. [11]

Friedberg is also known for his love of music and poetry. He wrote poems in several letters [12] [13] [14] [15] to cognitive scientist and writer Douglas Hofstadter in 1989. The last letter contains two sonnets ”The Electromagnetic Spectrum” and "Fermions and Bosons". These letters also include critiques and analyses of topics in Metamagical Themas , a collection of articles that Hofstadter wrote for Scientific American during the early 1980s.

Friedberg wrote an informal book on number theory titled "An Adventurer's Guide to Number Theory". [16] In the book, he states, "The difference between the theory of numbers and arithmetic is like the difference between poetry and grammar."

Selected publications

Related Research Articles

In computability theory, the Church–Turing thesis is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability:

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars as well as in the early stages of the universe moments after the Big Bang.

Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."

Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory.

<span class="mw-page-title-main">John Stewart Bell</span> Northern Irish physicist (1928–1990)

John Stewart Bell FRS was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum physics regarding hidden-variable theories.

<span class="mw-page-title-main">Hilbert's sixth problem</span> Axiomatization of probability and physics

Hilbert's sixth problem is to axiomatize those branches of physics in which mathematics is prevalent. It occurs on the widely cited list of Hilbert's problems in mathematics that he presented in the year 1900. In its common English translation, the explicit statement reads:

In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manip­ulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an obs­ervation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure.

In computer science and mathematical logic the Turing degree or degree of unsolvability of a set of natural numbers measures the level of algorithmic unsolvability of the set.

In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X with the property that X is not decidable by an oracle machine with an oracle for X.

In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory.

Retrocausality, or backwards causation, is a concept of cause and effect in which an effect precedes its cause in time and so a later event affects an earlier one. In quantum physics, the distinction between cause and effect is not made at the most fundamental level and so time-symmetric systems can be viewed as causal or retrocausal. Philosophical considerations of time travel often address the same issues as retrocausality, as do treatments of the subject in fiction, but the two phenomena are distinct.

<span class="mw-page-title-main">N. David Mermin</span> American physicist

Nathaniel David Mermin is a solid-state physicist at Cornell University best known for the eponymous Mermin–Wagner theorem, his application of the term "boojum" to superfluidity, his textbook with Neil Ashcroft on solid-state physics, and for contributions to the foundations of quantum mechanics and quantum information science.

In recursion theory, the mathematical theory of computability, a maximal set is a coinfinite recursively enumerable subset A of the natural numbers such that for every further recursively enumerable subset B of the natural numbers, either B is cofinite or B is a finite variant of A or B is not a superset of A. This gives an easy definition within the lattice of the recursively enumerable sets.

Jeremy Nicholas Butterfield FBA is a philosopher at the University of Cambridge, noted particularly for his work on philosophical aspects of quantum theory, relativity theory and classical mechanics.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Albert Muchnik</span> Russian mathematician (1934–2019)

Albert Abramovich Muchnik was a Russian mathematician who worked in the field of foundations and mathematical logic.

Pierre Hohenberg was a French-American theoretical physicist, who worked primarily on statistical mechanics.

Tim William Eric Maudlin is an American philosopher of science who has done influential work on the metaphysical foundations of physics and logic.

In computability theory, a Friedberg numbering is a numbering (enumeration) of the set of all uniformly recursively enumerable sets that has no repetitions: each recursively enumerable set appears exactly once in the enumeration.

In mathematical logic, the Friedberg–Muchnik theorem is a theorem about Turing reductions that was proven independently by Albert Muchnik and Richard Friedberg in the middle of the 1950s. It is a more general view of the Kleene–Post theorem. The Kleene–Post theorem states that there exist incomparable languages A and B below K. The Friedberg–Muchnik theorem states that there exist incomparable, computably enumerable languages A and B. Incomparable meaning that there does not exist a Turing reduction from A to B or a Turing reduction from B to A. It is notable for its use of the priority finite injury approach.

References

  1. "2004 Pioneer Award - Richard M. Friedberg". ieeexplore.ieee.org. Retrieved 2023-10-21.
  2. “Derivation of Regge’s Action from Einstein’s Theory of General Relativity”, R. Friedberg and T. D. Lee, Nucl. Phys. B 242, 145 (1984).
  3. “Efficient Sorting of Genomic Permutation...” S. Yancopoulos, O. Attie, Friedberg, Bioinformatics vol. 21, pp 3352-59 (2005)
  4. “Compatible Quantum Theory”, R. Friedberg, P.C. Hohenberg, Rep. Prog. Phys. 77, 2014, 092001 - 092035 ; “What is Quantum Mechanics? A Minimal Formulation R. Friedberg, P. C. Hohenberg”, Published by Springer-Verlag 21 February 2018 by Springer-Verlag in Foundations of Physics, Feb 21, page 1 (2018)
  5. Year: 1940; Census Place: New York, New York, New York; Roll: m-t0627-02655; Page: 1A; Enumeration District: 31-1314
  6. “Two Recursively Enumerable Sets Not Recursive in Each Other”, [solution of Post’s problem], Proc. Natl. Acad. Sci. vol. 43, p. 236 (1957) [communicated by Kurt Gödel].
  7. “A criterion for completeness of degrees of unsolvability", Richard. M. Friedberg, Journal of Symbolic Logic, Volume 22, Issue 2, June 1957, pp. 159-160
  8. “A Learning Machine: Part I”, R. M. Friedberg, IBM Journal of Research and Development (Volume: 2, Issue: 1, Jan. 1958).
  9. “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication”, Richard M. Friedberg, Journal of Symbolic Logic, Volume 23, Issue 3 September 1958, pp. 309-316
  10. The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill, 1966 2nd ed: New York: American Institute of Physics, 1989. ISBN   0-88318-617-9
  11. “Compatible Quantum Theory”, R. Friedberg, P.C. Hohenberg, Rep. Prog. Phys. 77, 2014, 092001 - 092035 ; “What is Quantum Mechanics? A Minimal Formulation R. Friedberg, P. C. Hohenberg”, Published by Springer-Verlag 21 February 2018 by Springer-Verlag in Foundations of Physics, Feb 21, page 1 (2018).
  12. http://physics.gmu.edu/~isatija/R2D2.pdf [ bare URL PDF ]
  13. http://physics.gmu.edu/~isatija/R2D3.pdf [ bare URL PDF ]
  14. http://physics.gmu.edu/~isatija/R2D4.pdf [ bare URL PDF ]
  15. http://physics.gmu.edu/~isatija/R2D5.pdf [ bare URL PDF ]
  16. "An Adventurer’s Guide to Number Theory", R. Friedberg. New York: McGraw-Hill, 1968; reissued by Dover Publications, 1994.

See also