This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Richard Friedberg | |
---|---|
Born | 8 October 1935 88) New York City, New York, U.S. | (age
Alma mater | Harvard University |
Awards | William Lowell Putnam Mathematical Competition (1956) IEEE Evolutionary Computation Pioneer Award (2004) [1] |
Scientific career | |
Fields | Physicist |
Institutions | Barnard College Columbia University |
Doctoral advisor | Tsung-Dao Lee |
Richard M. Friedberg (born October 8, 1935) is a theoretical physicist who has contributed to a wide variety of problems in mathematics and physics. These include mathematical logic, number theory, solid state physics, general relativity, [2] particle physics, quantum optics, genome research, [3] and the foundations of quantum physics. [4]
Friedberg was born in Manhattan on Oct 8, 1935, the child of cardiologist Charles K. Friedberg, and playwright Gertrude Tonkonogy. [5]
Friedberg's most well-known work dates back to the mid-1950s. As an undergraduate at Harvard, he published several papers over a period of 2–3 years. The first paper introduced the priority method, a common technique in computability theory, in order to prove the existence of recursively enumerable sets with incomparable degrees of unsolvability. [6] [7] [8] [9]
In 1968, Friedberg proved independently what became known as Bell’s inequality, not knowing that J. S. Bell had proved it a few years earlier. He showed it to the physicist and historian Max Jammer, who somehow managed to insert it into his book “The Conceptual Development of Quantum Mechanics”, [10] although the latter bears the publication date 1966. This caused Friedberg some embarrassment later when classmates at Harvard, knowing of the result only through Jammer’s book, supposed that Friedberg was the first discoverer. (A letter from Friedberg to Jammer dated May 1971 begins, “It was nice of you to remember what I showed you in 1968. I finally got around to writing it up in 1969, but just then I found out about Bell’s 1964 paper (Physics 1, 195) which had anticipated my ‘discovery’ by three years. So I did not publish.”) More recently, Friedberg worked on the foundations of quantum mechanics in collaboration with the late Pierre Hohenberg. [11]
Friedberg is also known for his love of music and poetry. He wrote poems in several letters [12] [13] [14] [15] to cognitive scientist and writer Douglas Hofstadter in 1989. The last letter contains two sonnets ”The Electromagnetic Spectrum” and "Fermions and Bosons". These letters also include critiques and analyses of topics in Metamagical Themas , a collection of articles that Hofstadter wrote for Scientific American during the early 1980s.
Friedberg wrote an informal book on number theory titled "An Adventurer's Guide to Number Theory". [16] In the book, he states, "The difference between the theory of numbers and arithmetic is like the difference between poetry and grammar."
In computability theory, the Church–Turing thesis is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability:
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory.
John Stewart Bell FRS was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum physics regarding hidden-variable theories.
The spin–statistics theorem proves that the observed relationship between the intrinsic spin of a particle and the quantum particle statistics of collections of such particles is a consequence of the mathematics of quantum mechanics. In units of the reduced Planck constant ħ, all particles that move in 3 dimensions have either integer spin and obey Bose-Einstein statistics or half-integer spin and obey Fermi-Dirac statistics.
Hilbert's sixth problem is to axiomatize those branches of physics in which mathematics is prevalent. It occurs on the widely cited list of Hilbert's problems in mathematics that he presented in the year 1900. In its common English translation, the explicit statement reads:
In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manipulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an observation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure.
In computer science and mathematical logic the Turing degree or degree of unsolvability of a set of natural numbers measures the level of algorithmic unsolvability of the set.
In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X′ with the property that X′ is not decidable by an oracle machine with an oracle for X.
In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory.
Nathaniel David Mermin is a solid-state physicist at Cornell University best known for the eponymous Hohenberg–Mermin–Wagner theorem, his application of the term "boojum" to superfluidity, his textbook with Neil Ashcroft on solid-state physics, and for contributions to the foundations of quantum mechanics and quantum information science.
Mioara Mugur-Schächter is a French-Romanian physicist, specialized in fundamental quantum mechanics, probability theory and theory of communication of information. She is also an epistemologist (methodologist) of generation of scientific knowledge. As a professor of theoretical physics at the University of Reims, she founded the Laboratory of Quantum Mechanics and Structures of Information which she directed until 1994. She is currently president of the Centre pour la Synthèse d'une Épistémologie Formalisée (CeSEF).
In recursion theory, the mathematical theory of computability, a maximal set is a coinfinite recursively enumerable subset A of the natural numbers such that for every further recursively enumerable subset B of the natural numbers, either B is cofinite or B is a finite variant of A or B is not a superset of A. This gives an easy definition within the lattice of the recursively enumerable sets.
Jeremy Nicholas Butterfield FBA is a philosopher at the University of Cambridge, noted particularly for his work on philosophical aspects of quantum theory, relativity theory and classical mechanics.
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.
Albert Abramovich Muchnik was a Russian mathematician who worked in the field of foundations and mathematical logic.
Pierre Hohenberg was a French-American theoretical physicist, who worked primarily on statistical mechanics.
Tim William Eric Maudlin is an American philosopher of science who has done influential work on the metaphysical foundations of physics and logic.
In computability theory, a Friedberg numbering is a numbering (enumeration) of the set of all uniformly recursively enumerable sets that has no repetitions: each recursively enumerable set appears exactly once in the enumeration.
In mathematical logic, the Friedberg–Muchnik theorem is a theorem about Turing reductions that was proven independently by Albert Muchnik and Richard Friedberg in the middle of the 1950s. It is a more general view of the Kleene–Post theorem. The Kleene–Post theorem states that there exist incomparable languages A and B below K. The Friedberg–Muchnik theorem states that there exist incomparable, computably enumerable languages A and B. Incomparable meaning that there does not exist a Turing reduction from A to B or a Turing reduction from B to A. It is notable for its use of the priority finite injury approach.