Alex Shalek | |
---|---|
Born | December 18, 1981 |
Alma mater | Columbia University Harvard University |
Awards | J. W. Kieckhefer Professorship (2023-current) Avant-Garde (DP1 Pioneer) Award from the National Institute for Drug Abuse (2021) Harold E. Edgerton Faculty Achievement Award, MIT (2020) Pew Charitable Trust Pew-Stewart Scholar (2018) Alfred P. Sloan Foundation Sloan Research Fellow (2018) Searle Scholars Program (2015) Beckman Young Investigators Award (2015) NIH Director's New Innovator Award (2015) |
Scientific career | |
Institutions | Massachusetts Institute of Technology Broad Institute Koch Institute for Integrative Cancer Research Ragon Institute Mass General Hospital Harvard Medical School |
Doctoral advisor | Hongkun Park |
Website | www |
Alex K. Shalek, a biomedical engineer, is the Director of the Institute for Medical Engineering and Science (IMES) and the J. W. Kieckhefer Professor in IMES and the Department of Chemistry at the Massachusetts Institute of Technology. He is an Extramural Member of the Koch Institute for Integrative Cancer Research at MIT. Additionally, he is a Member of the Ragon Institute, an Institute Member of the Broad Institute, an Assistant in Immunology at Massachusetts General Hospital, and an Instructor in Health Sciences and Technology at Harvard Medical School. The multi-disciplinary research of the Shalek Lab aims to create and implement broadly-applicable methods to study and engineer cellular responses in tissues, to drive biological discovery and improve prognostics, diagnostics, and therapeutics for autoimmune, infectious, and cancerous diseases. Shalek and his lab are best known for their work in single-cell genomics and for studying a number of devastating, but difficult to study, human diseases with partners around the world. [1]
Shalek received his B.A. summa cum laude in 2004 from Columbia University where he studied chemical physics as a John Jay Scholar with Richard Bersohn and Louis Brus. He then performed graduate work in chemical physics developing arrays of nanowires as cellular "syringes" and electrochemical probes under the direction of Hongkun Park at Harvard University. [2] After, as a postdoctoral fellow, under the direction of Park and Aviv Regev at the Broad Institute, Shalek helped pioneer single-cell patterns in cellular responses to study how cells respond differently to the same condition, showing that genome-wide gene expression covariation across cells could be used to define cellular types and states, their internal "circuitry", from the “bottom-up”. [3] [4] [5] [6]
As an independent investigator, Shalek and his lab have helped scale and simplify single cell genomics to study complex, low-input clinical specimens around the world. [7] [5] [8] In parallel, they have used these and other approaches [8] [9] [10] [11] [12] [13] [14] [ excessive citations ] to help examine the causes and consequences of cellular heterogeneity across cancers, [15] [16] [17] [18] [19] infectious diseases, [5] [8] [9] [10] [20] [21] [22] [23] [24] [25] [26] [27] [ excessive citations ] and inflammation. [28] [29] [30]
Current work in the Shalek Lab includes both the development of broadly enabling technologies as well as their application to characterize, model, and control multicellular systems. With respect to technology development, the lab brings together areas of research in genomics, chemical biology, and nanotechnology to establish accessible approaches to profile and control cells and their interactions.
In addition to these tools with the global research community, [31] the lab is applying them to dissect human diseases, like COVID-19, [32] [33] methodically linking cellular features and clinical observations. Major areas of focus include how: immune cells coordinate balanced responses to environmental stresses; [28] [29] [8] [34] host cell-pathogen interactions evolve during infection; [8] [9] [10] [21] [22] [23] [26] [ excessive citations ] and, tumor cells evade therapeutic treatment and natural immunity. [15] [17] [18] [19] [25] [35]
From these observations and those of others, the lab aims to understand how disease alters tissue function at the cellular level and realize therapeutic and prophylactic interventions to reestablish or support human health.
Robert G. Roeder is an American biochemist. He is known as a pioneer scientist in eukaryotic transcription. He discovered three distinct nuclear RNA polymerases in 1969 and characterized many proteins involved in the regulation of transcription, including basic transcription factors and the first mammalian gene-specific activator over five decades of research. He is the recipient of the Gairdner Foundation International Award in 2000, the Albert Lasker Award for Basic Medical Research in 2003, and the Kyoto Prize in 2021. He currently serves as Arnold and Mabel Beckman Professor and Head of the Laboratory of Biochemical and Molecular Biology at The Rockefeller University.
Guide RNA (gRNA) or single guide RNA (sgRNA) is a short sequence of RNA that functions as a guide for the Cas9-endonuclease or other Cas-proteins that cut the double-stranded DNA and thereby can be used for gene editing. In bacteria and archaea, gRNAs are a part of the CRISPR-Cas system that serves as an adaptive immune defense that protects the organism from viruses. Here the short gRNAs serve as detectors of foreign DNA and direct the Cas-enzymes that degrades the foreign nucleic acid.
In molecular biology and biochemistry, glycoconjugates are the classification family for carbohydrates – referred to as glycans – which are covalently linked with chemical species such as proteins, peptides, lipids, and other compounds. Glycoconjugates are formed in processes termed glycosylation.
Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of approximately 50 cell population doublings before becoming senescent. This process is known as "replicative senescence", or the Hayflick limit. Hayflick's discovery of mortal cells paved the path for the discovery and understanding of cellular aging molecular pathways. Cellular senescence can be initiated by a wide variety of stress inducing factors. These stress factors include both environmental and internal damaging events, abnormal cellular growth, oxidative stress, autophagy factors, among many other things.
RNA-Seq is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome.
MicroRNA sequencing (miRNA-seq), a type of RNA-Seq, is the use of next-generation sequencing or massively parallel high-throughput DNA sequencing to sequence microRNAs, also called miRNAs. miRNA-seq differs from other forms of RNA-seq in that input material is often enriched for small RNAs. miRNA-seq allows researchers to examine tissue-specific expression patterns, disease associations, and isoforms of miRNAs, and to discover previously uncharacterized miRNAs. Evidence that dysregulated miRNAs play a role in diseases such as cancer has positioned miRNA-seq to potentially become an important tool in the future for diagnostics and prognostics as costs continue to decrease. Like other miRNA profiling technologies, miRNA-Seq has both advantages and disadvantages.
Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.
Perturb-seq refers to a high-throughput method of performing single cell RNA sequencing (scRNA-seq) on pooled genetic perturbation screens. Perturb-seq combines multiplexed CRISPR mediated gene inactivations with single cell RNA sequencing to assess comprehensive gene expression phenotypes for each perturbation. Inferring a gene’s function by applying genetic perturbations to knock down or knock out a gene and studying the resulting phenotype is known as reverse genetics. Perturb-seq is a reverse genetics approach that allows for the investigation of phenotypes at the level of the transcriptome, to elucidate gene functions in many cells, in a massively parallel fashion.
Jeannie T. Lee is a Professor of Genetics at Harvard Medical School and the Massachusetts General Hospital, and a Howard Hughes Medical Institute Investigator. She is known for her work on X-chromosome inactivation and for discovering the functions of a new class of epigenetic regulators known as long noncoding RNAs (lncRNAs), including Xist and Tsix.
Bradley E. Bernstein is a biologist and Professor of Cell Biology at Harvard Medical School. He is Chair of the Department of Cancer Biology at the Dana–Farber Cancer Institute and the Director of the Broad Institute's Gene Regulation Observatory. He is known for contributions to the fields of epigenetics and cancer biology.
Kimberly W. Anderson is an American chemist. She is the Gill Eminent Professor of Chemical Engineering and Associate Dean for Administration and Academic Affairs in the College of Engineering at the University of Kentucky.
Nina Papavasiliou is an immunologist and Helmholtz Professor in the Division of Immune Diversity at the German Cancer Research Center in Heidelberg, Germany. She is also an adjunct professor at the Rockefeller University, where she was previously associate professor and head of the Laboratory of Lymphocyte Biology. She is best known for her work in the fields of DNA and RNA editing.
Trajectory inference or pseudotemporal ordering is a computational technique used in single-cell transcriptomics to determine the pattern of a dynamic process experienced by cells and then arrange cells based on their progression through the process. Single-cell protocols have much higher levels of noise than bulk RNA-seq, so a common step in a single-cell transcriptomics workflow is the clustering of cells into subgroups. Clustering can contend with this inherent variation by combining the signal from many cells, while allowing for the identification of cell types. However, some differences in gene expression between cells are the result of dynamic processes such as the cell cycle, cell differentiation, or response to an external stimuli. Trajectory inference seeks to characterize such differences by placing cells along a continuous path that represents the evolution of the process rather than dividing cells into discrete clusters. In some methods this is done by projecting cells onto an axis called pseudotime which represents the progression through the process.
CITE-Seq is a method for performing RNA sequencing along with gaining quantitative and qualitative information on surface proteins with available antibodies on a single cell level. So far, the method has been demonstrated to work with only a few proteins per cell. As such, it provides an additional layer of information for the same cell by combining both proteomics and transcriptomics data. For phenotyping, this method has been shown to be as accurate as flow cytometry by the groups that developed it. It is currently one of the main methods, along with REAP-Seq, to evaluate both gene expression and protein levels simultaneously in different species.
Richard William Carthew is a developmental biologist and quantitative biologist at Northwestern University. He is a professor of molecular biosciences and is the director of the NSF-Simons Center for Quantitative Biology.
snRNA-seq, also known as single nucleus RNA sequencing, single nuclei RNA sequencing or sNuc-seq, is an RNA sequencing method for profiling gene expression in cells which are difficult to isolate, such as those from tissues that are archived or which are hard to be dissociated. It is an alternative to single cell RNA seq (scRNA-seq), as it analyzes nuclei instead of intact cells.
Bryan Richard Cullen is a James B. Duke Professor of Molecular Genetics and Microbiology at Duke University Medical Center in Durham, North Carolina. Cullen was the Founding Director of the Duke University Center for Virology.
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. The hallmarks of aging are the types of biochemical changes that occur in all organisms that experience biological aging and lead to a progressive loss of physiological integrity, impaired function and, eventually, death. They were first listed in a landmark paper in 2013 to conceptualize the essence of biological aging and its underlying mechanisms.
Deterministic Barcoding in Tissue for Spatial Omics Sequencing (DBiT-seq) was developed at Yale University by Rong Fan and colleagues in 2020 to create a multi-omics approach for studying spatial gene expression heterogenicity within a tissue sample. This method can be used for the co-mapping mRNA and protein levels at a near single-cell resolution in fresh or frozen formaldehyde-fixed tissue samples. DBiT-seq utilizes next generation sequencing (NGS) and microfluidics. This method allows for simultaneous spatial transcriptomic and proteomic analysis of a tissue sample. DBiT-seq improves upon previous spatial transcriptomics applications such as High-Definition Spatial Transcriptomics (HDST) and Slide-seq by increasing the number of detectable genes per pixel, increased cellular resolution, and ease of implementation.
Single-cell genome and epigenome by transposases sequencing (scGET-seq) is a DNA sequencing method for profiling open and closed chromatin. In contrast to single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), which only targets active euchromatin, scGET-seq is also capable of probing inactive heterochromatin.