Algebraic link

Last updated
Decomposition of the Borromean rings by a Conway sphere (black dotted vertical midline) into two 2-tangles, showing that the Borromean rings form an algebraic link Algebraic Borromean link diagram.svg
Decomposition of the Borromean rings by a Conway sphere (black dotted vertical midline) into two 2-tangles, showing that the Borromean rings form an algebraic link

In the mathematical field of knot theory, an algebraic link is a link that can be decomposed by Conway spheres into 2-tangles. [1] Algebraic links are also called arborescent links. [2] Although algebraic links and algebraic tangles were originally defined by John H. Conway as having two pairs of open ends, they were subsequently generalized to more pairs. [3]

Related Research Articles

John Horton Conway English mathematician (1937–2020)

John Horton Conway was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life.

Knot theory Study of mathematical knots

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself.

Richard Borcherds British-American mathematician (born 1959)

Richard Ewen Borcherds is a British mathematician currently working in quantum field theory. He is known for his work in lattices, group theory, and infinite-dimensional algebras, for which he was awarded the Fields Medal in 1998.

Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. In general, the converse does not hold.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Conway and Simon P. Norton in 1979.

Borromean rings Three linked but pairwise separated rings

In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

Link (knot theory) Collection of knots which do not intersect, but may be linked

In mathematical knot theory, a link is a collection of knots which do not intersect, but which may be linked together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory. Implicit in this definition is that there is a trivial reference link, usually called the unlink, but the word is also sometimes used in context where there is no notion of a trivial link.

Pretzel link Link formed from a finite number of twisted sections

In the mathematical theory of knots, a pretzel link is a special kind of link. It consists of a finite number tangles made of two intertwined circular helices, The tangles are connected cyclicly, the first component of the first tangle is connected to the second component of the second tangle, etc., with the first component of the last tangle connected to the second component of the first. A pretzel link which is also a knot is a pretzel knot.

Brunnian link Interlinked multi-loop construction where cutting one loop frees all the others

In knot theory, a branch of topology, a Brunnian link is a nontrivial link that becomes a set of trivial unlinked circles if any one component is removed. In other words, cutting any loop frees all the other loops.

In the mathematical field of knot theory, a 2-bridge knot is a knot which can be regular isotoped so that the natural height function given by the z-coordinate has only two maxima and two minima as critical points. Equivalently, these are the knots with bridge number 2, the smallest possible bridge number for a nontrivial knot.

Mutation (knot theory) Kind of operation in knot theory

In the mathematical field of knot theory, a mutation is an operation on a knot that can produce different knots. Suppose K is a knot given in the form of a knot diagram. Consider a disc D in the projection plane of the diagram whose boundary circle intersects K exactly four times. We may suppose that the disc is geometrically round and the four points of intersection on its boundary with K are equally spaced. The part of the knot inside the disc is a tangle. There are two reflections that switch pairs of endpoints of the tangle. There is also a rotation that results from composition of the reflections. A mutation replaces the original tangle by a tangle given by any of these operations. The result will always be a knot and is called a mutant of K.

Conway notation (knot theory) Notation used to describe knots based on operations on tangles

In knot theory, Conway notation, invented by John Horton Conway, is a way of describing knots that makes many of their properties clear. It composes a knot using certain operations on tangles to construct it.

In mathematics, especially in the area of topology known as knot theory, an invertible knot is a knot that can be continuously deformed to itself, but with its orientation reversed. A non-invertible knot is any knot which does not have this property. The invertibility of a knot is a knot invariant. An invertible link is the link equivalent of an invertible knot.

Tangle (mathematics)

In mathematics, a tangle is generally one of two related concepts:

In mathematics, a Conway algebra, introduced by Paweł Traczyk and Józef H. Przytycki (1988) and named after John Horton Conway, is an algebraic structure with two binary operations | and * and an infinite number of constants a1, a2,..., satisfying certain identities. Conway algebras can be used to construct invariants of links that are skein invariant.

Hernando Burgos Soto is a Canadian writer and mathematician, professor of mathematics at George Brown College. He is the author of several math papers in which he introduced some mathematics concepts and extended to tangles some celebrated results of knot theory about the Khovanov homology and the Jones polynomial. During his career as a mathematician, his interests have included Mathematical Statistics, Knot Theory, Algebraic Topology and more recently Mathematical Finance. He is comfortable writing in English and Spanish. When writing in Spanish, he works in the area of prose fiction writing short stories. Some of his short stories were published at the website Cuentos y Cuentos.

References

  1. Thistlethwaite, Morwen B. (1991). "On the algebraic part of an alternating link". Pacific Journal of Mathematics . 151 (2): 317–333. MR   1132393.
  2. Gabai, David (1986). "Genera of the arborescent links". Memoirs of the American Mathematical Society . 59 (339): 1–98. doi:10.1090/memo/0339.
  3. Hazewinkel, Michiel (2001). Encyclopaedia of Mathematics, Supplement III, Volume 13. Springer. p. 34. ISBN   9781556080104..