Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal processing is its generality and portability.
In the original formulation of algebraic signal processing by Puschel and Moura, the signals are collected in an -module for some algebra of filters, and filtering is given by the action of on the -module. [1]
Let be a field, for instance the complex numbers, and be a -algebra (i.e. a vector space over with a binary operation that is linear in both arguments) treated as a set of filters. Suppose is a vector space representing a set signals. A representation of consists of an algebra homomorphism where is the algebra of linear transformations with composition (equivalent, in the finite-dimensional case, to matrix multiplication). For convenience, we write for the endomorphism . To be an algebra homomorphism, must not only be a linear transformation, but also satisfy the property
Given a signal , convolution of the signal by a filter yields a new signal . Some additional terminology is needed from the representation theory of algebras. A subset is said to generate the algebra if every element of can be represented as polynomials in the elements of . The image of a generator is called a shift operator. In all practically all examples, convolutions are formed as polynomials in generated by shift operators. However, this is not necessarily the case for a representation of an arbitrary algebra.
In discrete signal processing (DSP), the signal space is the set of complex-valued functions with bounded energy (i.e. square-integrable functions). This means the infinite series where is the modulus of a complex number. The shift operator is given by the linear endomorphism . The filter space is the algebra of polynomials with complex coefficients and convolution is given by where is an element of the algebra. Filtering a signal by , then yields because .
A weighted graph is an undirected graph with pseudometric on the node set written . A graph signal is simply a real-valued function on the set of nodes of the graph. In graph neural networks, graph signals are sometimes called features. The signal space is the set of all graph signals where is a set of nodes in . The filter algebra is the algebra of polynomials in one indeterminate . There a few possible choices for a graph shift operator (GSO). The (un)normalized weighted adjacency matrix of is a popular choice, as well as the (un)normalized graph Laplacian . The choice is dependent on performance and design considerations. If is the GSO, then a graph convolution is the linear transformation for some , and convolution of a graph signal by a filter yields a new graph signal .
Other mathematical objects with their own proposed signal-processing frameworks are algebraic signal models. These objects include including quivers, [2] graphons, [3] semilattices, [4] finite groups, and Lie groups, [5] and others.
In the framework of representation theory, relationships between two representations of the same algebra are described with intertwining maps which in the context of signal processing translates to transformations of signals that respect the algebra structure. Suppose and are two different representations of . An intertwining map is a linear transformation such that
Intuitively, this means that filtering a signal by then transforming it with is equivalent to first transforming a signal with , then filtering by . The z transform [1] is a prototypical example of an intertwining map.
Inspired by a recent perspective that popular graph neural networks (GNNs) architectures are in fact convolutional neural networks (CNNs), [6] recent work has been focused on developing novel neural network architectures from the algebraic point-of-view. [7] [8] An algebraic neural network is a composition of algebraic convolutions, possibly with multiple features and feature aggregations, and nonlinearities.
In mathematics, convolution is a mathematical operation on two functions that produces a third function that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result. The integral is evaluated for all values of shift, producing the convolution function.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.
In signal processing, a matched filter is obtained by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication, as is frequently employed by the symbol in computer languages). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.
Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography.
In mathematics, the Cuntz algebra, named after Joachim Cuntz, is the universal C*-algebra generated by isometries of an infinite-dimensional Hilbert space satisfying certain relations. These algebras were introduced as the first concrete examples of a separable infinite simple C*-algebra, meaning as a Hilbert space, is isometric to the sequence space
In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
In the mathematical theory of artificial neural networks, universal approximation theorems are results that establish the density of an algorithmically generated class of functions within a given function space of interest. Typically, these results concern the approximation capabilities of the feedforward architecture on the space of continuous functions between two Euclidean spaces, and the approximation is with respect to the compact convergence topology.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
Quantum stochastic calculus is a generalization of stochastic calculus to noncommuting variables. The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoing measurement, as in quantum trajectories. Just as the Lindblad master equation provides a quantum generalization to the Fokker–Planck equation, quantum stochastic calculus allows for the derivation of quantum stochastic differential equations (QSDE) that are analogous to classical Langevin equations.
In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers.
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.
In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors. Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis.
Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form. The term Tau function, or -function, was first used systematically by Mikio Sato and his students in the specific context of the Kadomtsev–Petviashvili equation, and related integrable hierarchies. It is a central ingredient in the theory of solitons. Tau functions also appear as matrix model partition functions in the spectral theory of Random Matrices, and may also serve as generating functions, in the sense of combinatorics and enumerative geometry, especially in relation to moduli spaces of Riemann surfaces, and enumeration of branched coverings, or so-called Hurwitz numbers.
In machine learning, the word tensor informally refers to two different concepts that organize and represent data. Data may be organized in an M-way array that is informally referred to as a "data tensor". However, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector space. Observations, such as images, movies, volumes, sounds, and relationships among words and concepts, stored in an M-way array may be analyzed either by artificial neural networks or tensor methods.