Altitude tent

Last updated

An altitude tent is a sealed tent used to simulate a higher altitude with reduced oxygen. Living or training at altitude causes the body to adapt to the lower oxygen content by producing more oxygen-carrying red blood cells and hemoglobin, thus causing the body to adapt to the higher altitude and enhancing performance when returning to a lower altitude. Mountain climbers can use them to avoid altitude sickness, and athletes can use them to enhance performance at lower altitudes.

Contents

History

Altitude tents were first marketed in the mid-1990s, and are provided by many different companies in a number of designs.[ vague ][ citation needed ]

Rationale

Sleeping in a simulated altitude environment allows the body to achieve some of the positive adaptations to altitude while still permitting the athlete to perform workouts at an oxygen-rich lower altitude where muscles can perform at their normal work level. An altitude tent is one way to enable athletes living at any elevation to sleep in a high altitude-like environment. A more expensive option gaining popularity[ when? ] amongst professional athletes is to convert their entire bedroom to altitude.[ citation needed ]

Operation

Rather than simulating altitude with low air pressure (which would require substantial engineering and the use of an airlock to prevent implosion), the altitude tent remains at the ambient air pressure, substituting low pressure with low concentration of oxygen. While normal air contains 20.9% oxygen independent of altitude, the air in an altitude tent contains as little as 12% oxygen (the remainder being nitrogen). The partial pressure of oxygen inside the tent is the same as it is at the natural elevation that the tent is simulating.[ citation needed ]

Most altitude tents are normobaric, [1] which means they create a low-oxygen environment with a “hypoxic air generator” outside the tent pumping the hypoxic (low oxygen) air into the tent which replaces some of the oxygen with nitrogen. [1] The more oxygen-rich air inside the tent is displaced and with it, the excess carbon dioxide exhaled by the occupant(s). Most athletes use altitudes between 8,000 and 15,000 feet. To cause a physiological response, the altitude must be sufficient to reduce blood oxygen saturation (sometimes measured by a pulse oximeter) to approximately 90%.[ citation needed ]

In preparation to mountaineering, short-term use (1 week) of an altitude tent for overnight exposure (7.5 hours per night at 3000 m) prior to ascent to actual altitude can increase blood oxygen saturation during sleep and lessen symptoms of acute mountain sickness upon waking, but does not improve exercise performance at altitude. [2]

Types of altitude tents

The tents themselves come in several styles. Unlike camping tents, altitude tents cannot have much ventilation and often substitute clear plastic windows for the typical nylon and mesh vents. Displaced air escapes the tent through small outlets, seams, or zippers. Air delivery can be through hoses long enough to allow the generator to be placed in a different room, reducing noise. Smaller tents are placed on the bed, with the floor of the tent between mattress and box springs. Larger tents are of a cube shape, often tall enough to stand up in, and set up on the floor with the entire bed, and often a nightstand or two, placed inside. One or more zippered doors allow the occupants to enter and exit with limited loss of effective altitude.[ citation needed ]

One challenge with altitude tents is the buildup of heat and humidity. Because of the use of plastic panels to reduce exchange with the room, heat and humidity can build up in an altitude tent. Some tents allow the use of air conditioners to maintain comfortable conditions. Carbon dioxide from the exhaled air can also build up to uncomfortable levels if air exchange is too low. In recent years, advances in altitude tent design, and in the performance of the hypoxic air-supply units, have all resulted in greater air-exchange and significantly lower noise levels.[ citation needed ]

Debate

The ethics of the use of these devices by athletes has been discussed by the World Anti-Doping Agency (WADA), which claimed that it could be equivalent to blood doping and therefore they should be banned; however, on September 16, 2006, Dick Pound of the WADA announced that "…the overwhelming consensus of our health, medicine and research committees – was that, at this time, it is not appropriate to do so." [3]

The USADA report on doping in the Lance Armstrong case also indicates that sleeping in an altitude tent can be used to hide doping using erythropoietin (EPO), as natural EPO production is increased, confusing the tests. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medical)</span> Medical condition of lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.

Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

<span class="mw-page-title-main">Decompression sickness</span> Disorder caused by dissolved gases forming bubbled in tissues

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

<span class="mw-page-title-main">Altitude sickness</span> Medical condition due to rapid exposure to low oxygen at high altitude

Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. People can respond to high altitude in different ways. Symptoms may include headaches, vomiting, tiredness, confusion, trouble sleeping, and dizziness. Acute mountain sickness can progress to high-altitude pulmonary edema (HAPE) with associated shortness of breath or high-altitude cerebral edema (HACE) with associated confusion. Chronic mountain sickness may occur after long-term exposure to high altitude.

<span class="mw-page-title-main">Oxygen therapy</span> Use of oxygen as a medical treatment

Oxygen therapy, also referred to as supplemental oxygen, is the use of oxygen as medical treatment. Supplemental oxygen can also refer to the use of oxygen enriched air at altitude. Acute indications for therapy include hypoxemia, carbon monoxide toxicity and cluster headache. It may also be prophylactically given to maintain blood oxygen levels during the induction of anesthesia. Oxygen therapy is often useful in chronic hypoxemia caused by conditions such as severe COPD or cystic fibrosis. Oxygen can be delivered via nasal cannula, face mask, or endotracheal intubation at normal atmospheric pressure, or in a hyperbaric chamber. It can also be given through bypassing the airway, such as in ECMO therapy.

<span class="mw-page-title-main">Polycythemia</span> Laboratory diagnosis of high hemoglobin content in blood

Polycythemia is a laboratory finding in which the hematocrit and/or hemoglobin concentration are increased in the blood. Polycythemia is sometimes called erythrocytosis, and there is significant overlap in the two findings, but the terms are not the same: polycythemia describes any increase in hematocrit and/or hemoglobin, while erythrocytosis describes an increase specifically in the number of red blood cells in the blood.

<span class="mw-page-title-main">Generalized hypoxia</span> Medical condition of oxygen deprivation

Generalized hypoxia is a medical condition in which the tissues of the body are deprived of the necessary levels of oxygen due to an insufficient supply of oxygen, which may be due to the composition or pressure of the breathing gas, decreased lung ventilation, or respiratory disease, any of which may cause a lower than normal oxygen content in the arterial blood, and consequently a reduced supply of oxygen to all tissues perfused by the arterial blood. This usage is in contradistinction to localized hypoxia, in which only an associated group of tissues, usually with a common blood supply, are affected, usually due to an insufficient or reduced blood supply to those tissues. Generalized hypoxia is also used as a synonym for hypoxic hypoxia This is not to be confused with hypoxemia, which refers to low levels of oxygen in the blood, although the two conditions often occur simultaneously, since a decrease in blood oxygen typically corresponds to a decrease in oxygen in the surrounding tissue. However, hypoxia may be present without hypoxemia, and vice versa, as in the case of infarction. Several other classes of medical hypoxia exist.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Altitude training</span> Athletic training at high elevations

Altitude training is the practice by some endurance athletes of training for several weeks at high altitude, preferably over 2,400 metres (8,000 ft) above sea level, though more commonly at intermediate altitudes due to the shortage of suitable high-altitude locations. At intermediate altitudes, the air still contains approximately 20.9% oxygen, but the barometric pressure and thus the partial pressure of oxygen is reduced.

<span class="mw-page-title-main">Oxygen mask</span> Interface between the oxygen delivery system and the human user

An oxygen mask is a mask that provides a method to transfer breathing oxygen gas from a storage tank to the lungs. Oxygen masks may cover only the nose and mouth or the entire face. They may be made of plastic, silicone, or rubber. In certain circumstances, oxygen may be delivered via a nasal cannula instead of a mask.

<span class="mw-page-title-main">High-altitude pulmonary edema</span> Human disease

High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). However, cases have also been reported between 1,500–2,500 metres or 4,900–8,200 feet in more vulnerable subjects.

Blood doping is a form of doping in which the number of red blood cells in the bloodstream is boosted in order to enhance athletic performance. Because such blood cells carry oxygen from the lungs to the muscles, a higher concentration in the blood can improve an athlete's aerobic capacity (VO2 max) and endurance. Blood doping can be achieved by making the body produce more red blood cells itself using drugs, giving blood transfusions either from another person or back to the same individual, or by using blood substitutes.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

<span class="mw-page-title-main">Hypobaric chamber</span> Chamber for simulating high altitude

A hypobaric chamber, or altitude chamber, is a chamber used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body, especially hypoxia and hypobaria. Some chambers also control for temperature and relative humidity.

<span class="mw-page-title-main">Nike Oregon Project</span>

The Nike Oregon Project was a group created by the American corporation Nike, established in Beaverton, Oregon in 2001. The team folded on October 10, 2019 after an investigation resulted in a four-year ban of longtime coach Alberto Salazar.

<span class="mw-page-title-main">Effects of high altitude on humans</span> Environmental effects on physiology

The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in atmospheric air over the range in which humans can survive. The other major effect of altitude is due to lower ambient temperature.

A hypoxicator is a medical device intended to provide a stimulus for the adaptation of an individual's cardiovascular system by means of breathing reduced oxygen hypoxic air and triggering mechanisms of compensation. The aim of intermittent hypoxic training or hypoxic therapy conducted with such a device is to obtain benefits in physical performance and wellbeing through improved oxygen metabolism.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

Hypoxic air technology for fire prevention, also known as oxygen reduction system (ORS), is an active fire protection technique based on a permanent reduction of the oxygen concentration in the protected rooms. Unlike traditional fire suppression systems that usually extinguish fire after it is detected, hypoxic air is able to prevent fire.

Hypoventilation training is a physical training method in which periods of exercise with reduced breathing frequency are interspersed with periods with normal breathing. The hypoventilation technique consists of short breath holdings and can be performed in different types of exercise: running, cycling, swimming, rowing, skating, etc.

References

  1. 1 2 Beresini, Erin (May 24, 2013). "Do Altitude Tents Work?". Outside.
  2. Fulco, Charles S.; Muza, Stephen R.; Beidleman, Beth A.; Demes, Robby; Staab, Janet E.; Jones, Juli E.; Cymerman, Allen (2011). "Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude" (PDF). American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (2): R428–R436. doi:10.1152/ajpregu.00633.2010. PMID   21123763. S2CID   9602497. Archived from the original (PDF) on 2019-03-04.
  3. "WADA doesn't embrace altitude tents, but it won't ban them either". VeloNews. Agence France Presse. September 17, 2006.
  4. http://d3epuodzu3wuis.cloudfront.net/ReasonedDecision.pdf%5B%5D