Anatoly Libgober

Last updated
Anatoly Libgober
A. Libgober.jpg
Libgober during the Conference in honor of his 60th birthday (Jaca, Spain)
Born1949
Moscow, Soviet Union
Occupation Mathematician
Website homepages.math.uic.edu/~libgober/

Anatoly Libgober [1] (born 1949, in Moscow) is a Russian/American mathematician, known for work in algebraic geometry and topology of algebraic varieties.

Contents

Early life

Libgober was born in the Soviet Union, and immigrated to Israel in 1973 after active participation in the movement to change immigration policies in Soviet Union. He studied with Yuri Manin at Moscow University and with Boris Moishezon at Tel-Aviv University where he finished his PhD dissertation with Moishezon in 1977, [2] doing his postdoctorate work at the [[Institute for Advanced Study]] (Princeton, N.J). He lectured extensively visiting, among others, l'Institut des hautes études scientifiques (Bures sur Ivette, France), the Max Planck Institute in Bonn (Germany), the Mathematical Sciences Research Institute (Berkeley), Harvard University and Columbia University. Currently he is Professor Emeritus at the University of Illinois at Chicago where he worked until his retirement in 2010. He has two children, Brian Libgober, [3] a professor of political science and law at Northwestern University and Jonathan Libgober, [4] a professor of economics at the University of Southern California, and a daughter in law, Jacqueline Vayntrub.

Professional profile

Libgober's early work studies the diffeomorphism type of complete intersections in complex projective space. This later led to the discovery of relations between Hodge and Chern numbers. [5] He introduced the technique of Alexander polynomial [6] for the study of fundamental groups of the complements to plane algebraic curves. This led to Libgober's divisibility theorem [7] and explicit relations between these fundamental groups, the position of singularities, and local invariants of singularities (the constants of quasi-adjunction). Later he introduced the characteristic varieties of the fundamental groups, providing a multivariable extension of Alexander polynomials, and applied these methods to the study of homotopy groups of the complements to hypersurfaces in projective spaces and the topology of arrangements of hyperplanes. In the early 90s he started work on interactions between algebraic geometry and physics, providing mirror symmetry predictions for the count of rational curves on complete intersections [8] in projective spaces and developing the theory of elliptic genus of singular algebraic varieties. [9]

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">John Milnor</span> American mathematician

John Willard Milnor is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and the only mathematician to have won the Fields Medal, the Wolf Prize, the Abel Prize and all three Steele prizes.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Simon Donaldson</span> English mathematician

Sir Simon Kirwan Donaldson is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London.

In mathematics, geometric invariant theory is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.

In mathematics, Milnor maps are named in honor of John Milnor, who introduced them to topology and algebraic geometry in his book Singular Points of Complex Hypersurfaces and earlier lectures. The most studied Milnor maps are actually fibrations, and the phrase Milnor fibration is more commonly encountered in the mathematical literature. These were introduced to study isolated singularities by constructing numerical invariants related to the topology of a smooth deformation of the singular space.

The Oswald Veblen Prize in Geometry is an award granted by the American Mathematical Society for notable research in geometry or topology. It was funded in 1961 in memory of Oswald Veblen and first issued in 1964. The Veblen Prize is now worth US$5000, and is awarded every three years.

<span class="mw-page-title-main">Dennis Sullivan</span> American mathematician (born 1941)

Dennis Parnell Sullivan is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the Graduate Center of the City University of New York and is a distinguished professor at Stony Brook University.

John Willard Morgan is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.

<span class="mw-page-title-main">Alexander Givental</span> Russian American mathematician

Alexander Givental is a Russian-American mathematician who is currently Professor of Mathematics at the University of California, Berkeley. His main contributions have been in symplectic topology and singularity theory, as well as their relation to topological string theories.

The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they may behave like groups, for instance. In that case, they are called Lie Groups. Alternatively, they may be described by polynomial equations, in which case they are called algebraic varieties, and if they additionally carry a group structure, they are called algebraic groups.

The Geometry Festival is an annual mathematics conference held in the United States.

<span class="mw-page-title-main">Michael J. Hopkins</span> American mathematician

Michael Jerome Hopkins is an American mathematician known for work in algebraic topology.

<span class="mw-page-title-main">Kenji Fukaya</span> Japanese mathematician

Kenji Fukaya is a Japanese mathematician known for his work in symplectic geometry and Riemannian geometry. His many fundamental contributions to mathematics include the discovery of the Fukaya category. He was a permanent faculty member at the Simons Center for Geometry and Physics and a professor of mathematics at Stony Brook University before leaving for Tsinghua University.

<span class="mw-page-title-main">David A. Cox</span> American mathematician

David Archibald Cox is a retired American mathematician, working in algebraic geometry.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

<span class="mw-page-title-main">Kyoji Saito</span> Japanese mathematician (born 1944)

Kyōji Saitō is a Japanese mathematician, specializing in algebraic geometry and complex analytic geometry.

<span class="mw-page-title-main">Dan Burghelea</span> Romanian-American mathematician

Dan Burghelea is a Romanian-American mathematician, academic, and researcher. He is an Emeritus Professor of Mathematics at Ohio State University.

References

  1. CURRICULUM VITAE and complete LIST of PUBLICATIONS at University of Illinois at Chicago web page
  2. Anatoly Libgober at the Mathematics Genealogy Project
  3. "Brian Libgober: Department of Political Science - Northwestern University". polisci.northwestern.edu. Retrieved 2024-11-07.
  4. "Jonathan Libgober". USC Dornsife. Retrieved 2024-11-07.
  5. A.Libgober, J.Wood, Differentiable structures on complete intersections I, Topology, 21 (1982),469-482
  6. A.Libgober,Development of the theory of Alexander invariants in algebraic geometry, Topology of algebraic varieties and singularities, 3–17, Contemp. Math., 538, Amer. Math. Soc., Providence, RI, 2011.
  7. A.Libgober, Homotopy groups of the complements to singular hypersurfaces II, Annals of Mathematics (2) 139 (1994), no. 1, 117-144
  8. A.Libgober, J.Teitelbaum, Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations. Internat. Math. Res. Notices 1993, no. 1, 29–39 [ dead link ].
  9. L.Borisov, A.Libgober, McKay correspondence for elliptic genera, Annals of Mathematics (2) 161 (2005),no. 3, 1521-1569.