Andres Jaramillo-Botero | |
---|---|
Born | 1964 (age 59–60) Cali, Colombia |
Nationality | Colombian, American (since 2011) |
Alma mater | |
Known for | Nanotechnology Molecular modeling Robotics |
Spouse | Maria Claudia Ojeda |
Scientific career | |
Fields | Nanotechnology Computational Chemistry Physical Chemistry Electrical Engineering |
Institutions | California Institute of Technology Pontifical Xavierian University |
Doctoral advisor | Alfons Crespo William A. Goddard III |
Andres Jaramillo-Botero (born March 28, 1964) is a Colombian-American scientist and professor, working in nanoscale chemical physics, known for his contributions to first-principles based modeling, [1] [2] design, synthesis and characterization of nanostructured materials [3] [4] and devices. [5] [6]
Jaramillo-Botero earned a B.S. in electrical engineering from Boston University in 1986, an M.Sc. in computer science from the State University of New York as a Fulbright scholar in 1989, under the supervision of Kanad Ghose and Peter Kogge, and a Doctorate degree in engineering from the Polytechnic University of Valencia (UPV) in 1998 (Valencia, Spain), under the supervision of Alfons Crespo (at UPV) and co-supervision of William A. Goddard III (at Caltech). His doctoral work, developed while at the California Institute of Technology and NASA's Jet Propulsion Laboratory, during 1996–1997, contributed time-lower bound solution and algorithms to the n-body dynamics problem and their application at multiple length scales, from molecular [7] to macroscopic systems. [8]
Jaramillo-Botero began his academic career as an assistant professor in engineering and applied sciences at the Pontifical Xavierian University in 1990, where he reached full professorship by 1999. Since his early days at this institution, he served in various positions such as Member of the university’s board of directors, Engineering Faculty Dean, founding Director of the Doctoral program in Engineering and Applied Sciences, founding Director of the electronics engineering undergraduate program, and Director of the computer science undergraduate program. In 2001, Jaramillo-Botero was received into the Xavierian honor society for his contributions to science and academia in Colombia. [9]
He joined the California Institute of Technology (Caltech) full-time in 2006, and relocated to the US as an Alien of extraordinary ability recipient (EB-1A category). At Caltech, he holds key positions as a Scientist-Lecturer in the Chemistry and Chemical Engineering division, and as the Director of Nanotechnology and Multiscale Science [10] in the Materials and Process Simulation Center. [11] He remains a distinguished professor in engineering and science and a member of the Board of Regents [12] at the Pontifical Xavierian University in Colombia.
Jaramillo-Botero developed an early interest for multibody dynamics control as a research scholar in Advanced Industrial Applications at the Robotics and Autonomous Machinery division of the Mechanical Engineering Laboratory (1992-1993, National Institute of Advanced Industrial Science and Technology or AIST), where he focused on dynamic real-time visual control of robotic systems. He transitioned from macroscopic to nanoscale multibody dynamics control and modeling during his research appointment with NASA’s Jet Propulsion Laboratory and Caltech (1996-1997). He continued to develop fundamental frameworks for designing atomic-scale manipulators with optimized dynamic response during postdoctoral appointments (2002 -2005), as a National Science Foundation (NSF) Fellow in the Nanoscale Science and Engineering program, [13] at UCLA’s Institute for Pure and Applied Mathematics (IPAM), and, as an NSF Fellow in Computational Nanotechnology and Molecular Engineering, at Caltech. [14] [15]
Jaramillo-Botero is recognized for the development and application of first-principles-based physicochemical methods to study, design, characterize, synthesize, optimize and engineer nanostructured materials, devices, and systems.
His contributions span multiple fields of study, including: molecular hypervelocity impact phenomena in space missions, [16] [17] [18] dynamics of materials in extreme conditions (non-adiabatic behavior), [19] [20] first-principles based atomistic and coarse-grain force fields and simulation methods to study complex chemical processes, [21] [22] some of which are embedded in widely used open source codes like LAMMPS, [1] low-temperature crystalline thin film growth and characterization, [23] [24] [25] single-molecule sensing and actuation nanodevices, [26] [27] [5] [6] [7] and computational dynamics methods in large-scale multi body systems (from atomistic to continuum). [15] [28] [29] [30]
Jaramillo-Botero led the OMICAS Alliance as Scientific Director, [31] an international, multi-institutional research effort spurred by the Colombian government under the World Bank PACES program [32] to address food security and sustainable productivity, via Omics characterization and optimization of plant organisms. [33] and the creation of the OMICAS Research Institute - iOMICAS [34] at the Pontifical Xavierian University in Cali; a state of the art facility focused on translational research to address overarching challenges associated to health, food security, and productive sustainability.
Jaramillo-Botero was raised, along with three siblings, to parents Jorge Jaramillo-Douat and Clara Ines Botero. Jaramillo-Botero is married to Maria Claudia Ojeda. They bore two children, Tomas (2004-) and Lucas (2000–2009).
He holds multiple US and European patents as of 2016. [35]
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.
Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design.
William Andrew Goddard III is the Charles and Mary Ferkel Professor of Chemistry and Applied Physics, and director of the Materials and Process Simulation Center at the California Institute of Technology.
Multiscale modeling or multiscale mathematics is the field of solving problems that have important features at multiple scales of time and/or space. Important problems include multiscale modeling of fluids, solids, polymers, proteins, nucleic acids as well as various physical and chemical phenomena.
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a molecular dynamics program from Sandia National Laboratories. LAMMPS makes use of Message Passing Interface (MPI) for parallel communication and is free and open-source software, distributed under the terms of the GNU General Public License.
The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.
ReaxFF (for “reactive force field”) is a bond order-based force field developed by Adri van Duin, William A. Goddard, III, and co-workers at the California Institute of Technology. One of its applications is molecular dynamics simulations. Whereas traditional force fields are unable to model chemical reactions because of the requirement of breaking and forming bonds (a force field's functional form depends on having all bonds defined explicitly), ReaxFF eschews explicit bonds in favor of bond orders, which allows for continuous bond formation/breaking. ReaxFF aims to be as general as possible and has been parameterized and tested for hydrocarbon reactions, alkoxysilane gelation, transition-metal-catalyzed nanotube formation, and many advanced material applications such as Li ion batteries, TiO2, polymers, and high-energy materials.
Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.
Molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers: it has several molecular-scale blades attached at a certain pitch angle around the circumference of a shaft, aligned along the rotational axis.
Molecular modeling on GPU is the technique of using a graphics processing unit (GPU) for molecular simulations.
This is a list of notable computer programs that are used for nucleic acids simulations.
Ascalaph Designer is a computer program for general purpose molecular modelling for molecular design and simulations. It provides a graphical environment for the common programs of quantum and classical molecular modelling ORCA, NWChem, Firefly, CP2K and MDynaMix . The molecular mechanics calculations cover model building, energy optimizations and molecular dynamics. Firefly covers a wide range of quantum chemistry methods. Ascalaph Designer is free and open-source software, released under the GNU General Public License, version 2 (GPLv2).
DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.
Mark S. Lundstrom is an American electrical engineering researcher, educator, and author. He is known for contributions to the theory, modeling, and understanding of semiconductor devices, especially nanoscale transistors, and as the creator of the nanoHUB, a major online resource for nanotechnology. Lundstrom is Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering and in 2020 served as Acting Dean of the College of Engineering at Purdue University, in West Lafayette, Indiana.
Alejandro Strachan is a scientist in the field of computational materials and the Reilly Professor of Materials Engineering at Purdue University. Before joining Purdue University, he was a staff member at Los Alamos National Laboratory.
Multibody simulation (MBS) is a method of numerical simulation in which multibody systems are composed of various rigid or elastic bodies. Connections between the bodies can be modeled with kinematic constraints or force elements. Unilateral constraints and Coulomb-friction can also be used to model frictional contacts between bodies. Multibody simulation is a useful tool for conducting motion analysis. It is often used during product development to evaluate characteristics of comfort, safety, and performance. For example, multibody simulation has been widely used since the 1990s as a component of automotive suspension design. It can also be used to study issues of biomechanics, with applications including sports medicine, osteopathy, and human-machine interaction.
Wedge-based mechanical exfoliation is a method that involves the use of an ultra-sharp single crystal diamond wedge to penetrate inside a material and cleave a thin layer of material. It was proposed to produce few layers of graphene from a bulk highly ordered pyrolytic graphite (HOPG).
Yue Qi is a Chinese-born American nanotechnologist and physicist who specializes in computational materials scientist at Brown University. She won the 1999 Feynman Prize in Nanotechnology for Theory along with William Goddard and Tahir Cagin for "work in modeling the operation of molecular machine designs."
MBN Explorer is a software package for molecular dynamics simulations, structure optimization and kinetic Monte Carlo simulations. It is designed for multiscale computational analysis of structure and dynamics of atomic clusters and nanoparticles, biomolecules and nanosystems, nanostructured materials, different states of matter and various interfaces. The software has been developed by MBN Research Center.