Condensed matter experiments |
---|
ARPES |
ACAR |
Neutron scattering |
X-ray spectroscopy |
Quantum oscillations |
Scanning tunneling microscopy |
Angular Correlation of Electron Positron Annihilation Radiation (ACAR or ACPAR) is a technique of solid state physics to investigate the electronic structure of metals. It uses positrons which are implanted into a sample and annihilate with the electrons. In the majority of annihilation events, two gamma quanta are created that are, in the reference frame of the electron-positron pair, emitted in exactly opposite directions. In the laboratory frame, there is a small angular deviation from collinearity, which is caused by the momentum of the electron. Hence, measuring the angular correlation of the annihilation radiation yields information about the momentum distribution of the electrons in the solid.
All the macroscopic electronic and magnetic properties of a solid result from its microscopic electronic structure. In the simple free electron model, the electrons do not interact with each other nor with the atomic cores. The relation between energy and momentum is given by
with the electron mass . Hence, there is an unambiguous connection between electron energy and momentum. Because of the Pauli exclusion principle the electrons fill all the states up to a maximum energy, the so-called Fermi energy. By the momentum-energy relation, this corresponds to the Fermi momentum . The border between occupied and unoccupied momentum states, the Fermi surface, is arguably the most significant feature of the electronic structure and has a strong influence on the solid's properties. [2] In the free electron model, the Fermi surface is a sphere.
With ACAR it is possible to measure the momentum distribution of the electrons. A measurement on a free electron gas for example would give a positive intensity for momenta and zero intensity for . The Fermi surface itself can easily be identified from such a measurement by the discontinuity at .
In reality, there is interaction between the electrons with each other and the atomic cores of the crystal. This has several consequences: For example, the unambiguous relation between energy and momentum of an electronic state is broken and an electronic band structure is formed. Measuring the momentum of one electronic state gives a distribution of momenta which are all separated by reciprocal lattice vectors. Hence, an ACAR measurement on a solid with completely filled bands (i.e. on an insulator) gives a continuous distribution. An ACAR measurement on a metal has discontinuities where bands cross the Fermi level in all Brillouin zones in reciprocal space. This discontinuous distribution is superimposed by a continuous distribution from the entirely filled bands. From the discontinuities the Fermi surface can be extracted.
Since positrons that are created by beta decay possess a longitudinal spin polarization it is possible to investigate the spin-resolved electronic structure of magnetic materials. In this way, contributions from the majority and minority spin channel can be separated and the Fermi surface in the respective spin channels can be measured. [3]
ACAR has several advantages and disadvantages compared to other, more well known techniques for the investigation of the electronic structure like ARPES and quantum oscillation: ACAR requires neither low temperatures, high magnetic fields or UHV conditions. Furthermore, it is possible to probe the electronic structure at the surface and in the bulk (100 nm deep). However, ACAR is reliant on defect free samples as vacancy concentrations of up to 10−6 per atom can efficiently trap positrons and distort the measurement. [note 1]
In an ACAR measurement the angular deviation of many pairs of annihilation radiation is measured. Therefore, the underlying physical observable is often called 'two photon momentum density' (TPMD) or . Quantum mechanically, can be expressed as the squared absolute value of the Fourier transform of the multi-particle wave function of all the electron and the positron in the solid:
As it is not possible to imagine or compute the multi-particle wave function , it is often written as the sum of the single particle wave functions of the electron in the th state in the th band and the positron wave function :
The enhancement factor accounts for the electron-positron correlation. [note 2] There exist sophisticated enhancement models to describe the electron-positron correlations, [4] but in the following it will be assumed that . This approximation is called the independent particle model (IPM).
A very illustrative form of the TPMD can be obtained by the use of the Fourier coefficients for the wave function product :
These Fourier coefficients are distributed over all reciprocal vectors . If one assumes that the overlap of the electron and the positron wave function is constant for the same band , summing over all reciprocal lattice vectors gives a very instructive result: [5]
The function is the Heaviside step function and the constant . This means, if is folded back into the first Brillouin zone, the resulting density is flat except at the Fermi momentum. Therefore, the Fermi surface can be easily identified by looking for this discontinuities in .
When a positron is implanted into a solid it will quickly lose all its kinetic energy and annihilate with an electron. By this process two gamma quanta with 511 keV each are created which are in the reference frame of the electron positron pair emitted in exactly anti-parallel directions. In the laboratory frame, however, there is a Doppler shift from 511 keV and an angular deviation from collinearity. Although the full momentum information about the momentum of the electron is encoded in the annihilation radiation, due to technical limitations it cannot be fully recovered. Either one measures the Doppler broadening of the 511 keV annihilation radiation (DBAR) or the angular correlation of the annihilation radiation (ACAR).
For DBAR a detector with a high energy resolution like a high purity germanium detector is needed. Such detectors typically do not resolve the position of absorbed photons. Hence only the longitudinal component of the electron momentum can be measured. The resulting measurement is a 1D projection of .
In ACAR position sensitive detectors, gamma cameras or multi wire proportional chambers, are used. Such detectors have a position resolution of typically 1 to 3 mm but an energy resolution which is just good enough to sort out scattered photons or background radiation. As is discarded, a 2D projection of is measured. In order to get a high angular resolution of 1×10−3 rad and better, the detectors have to be set up at distances between 16 and 20 m from each other. Although it is possible to get even better angular resolutions by placing the detectors further apart, this comes at cost of the counting rate. Already with moderate detector distances, the measurement of one projection of typically takes weeks. [note 3]
As ACAR measures projections of the TPMD it is necessary to reconstruct in order to recover the Fermi surface. For such a reconstruction similar techniques as for X-ray computed tomography are used. In contrast to a human body, a crystal has many symmetries which can be included into the reconstruction. This makes the procedure more complex but increases the quality of the reconstruction. Another way to evaluate ACAR spectra is by a quantitative comparison with ab initio calculations. [7]
In the early years, ACAR was mainly used to investigate the physics of the electron-positron annihilation process. In the 1930s several annihilation mechanism were discussed. [8] [9] [10] Otto Klemperer could show with his angular correlation setup that the electron-positron pairs annihilate mainly into two gamma quanta which are emitted anti-parallel. [9] In the 1950s, it was realized that by measuring the deviation from collinearity of the annihilation radiation information about the electronic structure of a solid can be obtained. [11] [12]
During this time mainly setups with 'long slit geometry' were used. They consisted of a positron source and a sample in the center, one fixed detector on one side and a second movable detector on the other side of the sample. Each detector was collimated in such a way that the active area was much smaller in one than in the other dimension (thus 'long slit'). [note 4] A measurement with a long slit setup yields a 1D projection of the electron momentum density . Hence, this technique is called 1D-ACAR.
The development of two-dimensional gamma cameras and multi wire proportional chambers in the 1970s and early 1980s led to the setting up of the first 2D-ACAR spectrometer. [14] [15] This was an improvement to 1D-ACAR in two ways: i) The detection efficiency could be improved and ii) the informational content was greatly increased as the measurement gave a 2D projection of . An important early example of the use of spin-polarized 2D-ACAR is the proof of half metallicity in the half-Heusler alloy NiMnSb. [16] [17]
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.
A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. STM senses the surface by using an extremely sharp conducting tip that can distinguish features smaller than 0.1 nm with a 0.01 nm (10 pm) depth resolution. This means that individual atoms can routinely be imaged and manipulated. Most scanning tunneling microscopes are built for use in ultra-high vacuum at temperatures approaching absolute zero, but variants exist for studies in air, water and other environments, and for temperatures over 1000 °C.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.
Scintillation is the physical process where a material, called a scintillator, emits UV or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.
In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.
In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the crystalline lattice and from the occupation of electronic energy bands. The existence of a Fermi surface is a direct consequence of the Pauli exclusion principle, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called fermiology.
In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation.
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847647043(28)×10−24 J⋅T−1. The electron magnetic moment has been measured to an accuracy of 1.7×10−13 relative to the Bohr magneton.
In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid.
In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process:
The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.
A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.
This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.
Neutral Detector (ND) is a detector for particle physics experiments created by the team of physicists in the Budker Institute of Nuclear Physics, Novosibirsk, Russia. Experiments with the ND were conducted from 1982 to 1987 at the e+e− storage ring VEPP-2M in the energy range 2E=0.5-1.4 GeV.
In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
Electrons in free space can carry quantized orbital angular momentum (OAM) projected along the direction of propagation. This orbital angular momentum corresponds to helical wavefronts, or, equivalently, a phase proportional to the azimuthal angle. Electron beams with quantized orbital angular momentum are also called electron vortex beams.