Annamycin

Last updated
Annamycin
Annamycin.svg
Clinical data
ATC code
  • none
Identifiers
  • (7S,9S)-7-[(2R,3R,4R,5R,6S)-4,5-dihydroxy-3-iodo- 6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9- (2-hydroxyacetyl)-8,10-dihydro-7H-tetracene-5,12-dione
CAS Number
PubChem CID
ChemSpider
UNII
ECHA InfoCard 100.235.298 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C26H25IO11
Molar mass 640.379 g·mol−1
3D model (JSmol)
  • O=C2c1c(O)c5c(c(O)c1C(=O)c3ccccc23)C[C@@](O)(C(=O)CO)C[C@@H]5O[C@@H]4O[C@H]([C@H](O)[C@@H](O)[C@H]4I)C
  • InChI=1S/C26H25IO11/c1-9-19(30)24(35)18(27)25(37-9)38-13-7-26(36,14(29)8-28)6-12-15(13)23(34)17-16(22(12)33)20(31)10-4-2-3-5-11(10)21(17)32/h2-5,9,13,18-19,24-25,28,30,33-36H,6-8H2,1H3/t9-,13-,18+,19-,24-,25-,26-/m0/s1 Yes check.svgY
  • Key:CIDNKDMVSINJCG-GKXONYSUSA-N Yes check.svgY
   (verify)

Annamycin is an anthracycline antibiotic being investigated for the treatment of cancer.

Further reading


Related Research Articles

<span class="mw-page-title-main">Drug resistance</span> Pathogen resistance to medications

Drug resistance is the reduction in effectiveness of a medication such as an antimicrobial or an antineoplastic in treating a disease or condition. The term is used in the context of resistance that pathogens or cancers have "acquired", that is, resistance has evolved. Antimicrobial resistance and antineoplastic resistance challenge clinical care and drive research. When an organism is resistant to more than one drug, it is said to be multidrug-resistant.

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

<span class="mw-page-title-main">Doxorubicin</span> Chemotherapy medication

Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used together with other chemotherapy agents. Doxorubicin is given by injection into a vein.

An antimetabolite is a chemical that inhibits the use of a metabolite, which is another chemical that is part of normal metabolism. Such substances are often similar in structure to the metabolite that they interfere with, such as the antifolates that interfere with the use of folic acid; thus, competitive inhibition can occur, and the presence of antimetabolites can have toxic effects on cells, such as halting cell growth and cell division, so these compounds are used in chemotherapy for cancer.

<span class="mw-page-title-main">Daunorubicin</span> Chemotherapy medication mostly used for leukaemias

Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically it is used for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. It is administered by injection into a vein. A liposomal formulation known as liposomal daunorubicin also exists.

<span class="mw-page-title-main">Anthracycline</span> Class of antibiotics

Anthracyclines are a class of drugs used in cancer chemotherapy that are extracted from Streptomyces bacterium. These compounds are used to treat many cancers, including leukemias, lymphomas, breast, stomach, uterine, ovarian, bladder cancer, and lung cancers. The first anthracycline discovered was daunorubicin, which is produced naturally by Streptomyces peucetius, a species of Actinomycetota. Clinically the most important anthracyclines are doxorubicin, daunorubicin, epirubicin and idarubicin.

<span class="mw-page-title-main">Epirubicin</span> Chemical compound

Epirubicin is an anthracycline drug used for chemotherapy. It can be used in combination with other medications to treat breast cancer in patients who have had surgery to remove the tumor. It is marketed by Pfizer under the trade name Ellence in the US and Pharmorubicin or Epirubicin Ebewe elsewhere.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Trabectedin</span> Chemical compound

Trabectedin, sold under the brand name Yondelis, is an antitumor chemotherapy medication for the treatment of advanced soft-tissue sarcoma and ovarian cancer.

<span class="mw-page-title-main">Ixabepilone</span> Chemical compound

Ixabepilone is a pharmaceutical drug developed by Bristol-Myers Squibb as a chemotherapeutic medication for cancer.

<span class="mw-page-title-main">Pixantrone</span> Chemical compound

Pixantrone is an experimental antineoplastic (anti-cancer) drug, an analogue of mitoxantrone with fewer toxic effects on cardiac tissue. It acts as a topoisomerase II poison and intercalating agent. The code name BBR 2778 refers to pixantrone dimaleate, the actual substance commonly used in clinical trials.

<span class="mw-page-title-main">Polypeptide antibiotic</span> Class of antibiotics

Polypeptide antibiotics are a chemically diverse class of anti-infective and antitumor antibiotics containing non-protein polypeptide chains. Examples of this class include actinomycin, bacitracin, colistin, and polymyxin B. Actinomycin-D has found use in cancer chemotherapy. Most other polypeptide antibiotics are too toxic for systemic administration, but can safely be administered topically to the skin as an antiseptic for shallow cuts and abrasions.

<span class="mw-page-title-main">Zorubicin</span> Chemical compound

Zorubicin (INN) is a benzoylhydrazone derivative of the anthracycline antineoplastic antibiotic daunorubicin. Zorubicin intercalates into DNA; it as well interacts with topoisomerase II and inhibits DNA polymerases and therefore is used to treat cancer.

<span class="mw-page-title-main">Pirarubicin</span> Chemical compound

Pirarubicin (INN) is an anthracycline drug. An analogue of the anthracycline antineoplastic antibiotic doxorubicin. Pirarubicin intercalates into DNA and interacts with topoisomerase II, thereby inhibiting DNA replication and repair and RNA and protein synthesis. This agent is less cardiotoxic than doxorubicin and exhibits activity against some doxorubicin-resistant cell lines.

Bohemic acid is a mixture of chemical compounds which is obtained through fermentation by actinobacteria species in the genus Actinosporangium (Actinoplanaceae). The name honors the Puccini opera La Bohème and many individual components of the acid carry the names of characters from La Bohème. Most of those components are antitumor agents and anthracycline antibiotics active against Gram-positive bacteria.

<span class="mw-page-title-main">Kidamycin</span> Chemical compound

Kidamycin is an anthracycline antibiotic with anticancer activity. It was first synthesized from a strain of streptomyces bacteria isolated from a soil sample. In clinical trials, Kindamycin showed high effect against gram positive bacteria as well as multiple cancer models including Ehrlich ascites carcinoma, Sarcoma 180, NF-sarcoma, and Yoshida sarcoma.

Streptomyces coeruleorubidus is a bacterium species from the genus of Streptomyces which has been isolated from marine sediment. Streptomyces coeruleorubidus produces the following medications: pacidamycin 1, baumycin B1, baumycin B2, baumycin C1, feudomycin A, feudomycin B, feudomycin C, ficellomycin, feudomycinone A, and rubomycin.

<span class="mw-page-title-main">Angucycline</span> Class of antibiotics

Angucyclines are antibiotics isolated from Streptomyces species, which are used in chemotherapy as cytostatics against various types of cancer. The angucyclines include for example aquayamycin, the landomycins, moromycins, saquayamycins, urdamycins, and vineomycins.

<span class="mw-page-title-main">Bisantrene</span> Chemical compound

Bisantrene, trademarked as Zantrène, is an anthracenyl bishydrazone with anthracycline-like antineoplastic activity and an antimetabolite. Bisantrene intercalates with and disrupts the configuration of DNA, resulting in DNA single-strand breaks, DNA-protein crosslinking, and inhibition of DNA replication. This agent is similar to doxorubicin in activity, but unlike anthracyclines like doxorubicin, exhibits little cardiotoxicity.

<span class="mw-page-title-main">Tetracenomycin C</span> Chemical compound

Tetracenomycin C is an antitumor anthracycline-like antibiotic produced by Streptomyces glaucescens GLA.0. The pale-yellow antibiotic is active against some gram-positive bacteria, especially against streptomycetes. Gram-negative bacteria and fungi are not inhibited. In considering the differences of biological activity and the functional groups of the molecule, tetracenomycin C is not a member of the tetracycline or anthracyclinone group of antibiotics. Tetracenomycin C is notable for its broad activity against actinomycetes. As in other anthracycline antibiotics, the framework is synthesized by a polyketide synthase and subsequently modified by other enzymes.