Anti-personnel mine

Last updated

Sand-colored VS-50 mine intended for use in desert environments (shown beside a wristwatch, for scale) VS50.jpg
Sand-colored VS-50 mine intended for use in desert environments (shown beside a wristwatch, for scale)

An anti-personnel mine or anti-personnel landmine (APL) is a form of mine designed for use against humans, as opposed to an anti-tank mine, which target vehicles. [1] APLs are classified into: blast mines and fragmentation mines; the latter may or may not be a bounding mine. [2]

Contents

APLs are often designed to injure and maim, not kill, their victims to overwhelm the logistical (mostly medical) support system of enemy forces that encounter them. Some types of APLs can also damage the tracks on armoured vehicles or the tires of wheeled vehicles.

The International Campaign to Ban Landmines has sought to ban mines and destroy stockpile. For this purpose, it introduced in 1997 the Ottawa Treaty, which has not yet been accepted by over 30 states [3] and has not guaranteed the protection of citizens against APLs planted by non-state armed groups. [4]

Use

Soldier removing an Italian Valmara 69 anti-personnel bounding mine Valmara69 AP-mine.JPEG
Soldier removing an Italian Valmara 69 anti-personnel bounding mine

Anti-personnel mines are used in a similar manner to anti-tank mines, in static "mine fields" along national borders or in defense of strategic positions as described in greater detail in the land mine article. What makes them different from most anti-tank mines, however, is their smaller size, which enables large numbers to be simultaneously deployed over a large area. This process can be done manually, via dispensers on land vehicles, or from helicopters or aircraft. Alternatively, they can be dispensed by cargo-carrying artillery shells.

Other uses specific to anti-personnel mines are where they are deployed on an ad hoc basis in the following situations:

Blast mines

Anti-personnel mine in Cambodia Anti personnel mine.JPG
Anti-personnel mine in Cambodia

Typically, anti-personnel blast mines are triggered when the victim steps on them. Their primary purpose is to blow the victim's foot or leg off, disabling them. Injuring, rather than killing, the victim is viewed as preferable to increase the logistical (evacuation, medical) burden on the opposing force.

Effect

Vietnamese child shows injuries caused by a land mine explosion Vietnam-landmine-victim2.jpg
Vietnamese child shows injuries caused by a land mine explosion

When a person steps on a blast mine and activates it, the mine's main charge detonates, creating a blast shock wave consisting of hot gases travelling at extremely high velocity. The shock wave sends a huge compressive force upwards, ejecting the mine casing and any soil covering the mine along with it. When the blast wave hits the surface, it quickly transfers the force into the subject's footwear and foot. This results in a massive compression force being applied. In most cases, the victim's foot is blown off by the blast wave.

The resulting injuries to a human body depend on the size of the mine's main charge, the depth, type of soil it was laid in and how the victim contacted it, e.g. stepping on the mine, using all or part of the foot. Different types of soil will result in different amounts of energy being transferred upward into the subject's foot, with saturated "clay-like" soil transferring the most. Larger main charges result in a release of significantly more energy, driving the blast wave further up a target's foot and leg and causing greater injury, in some cases even described as severe as traumatic amputation of the leg up to the knee. [5]

Secondary injuries from a blast mine are often caused by the material that has been torn loose by the mine's explosion. This consists of the soil and stones that were on top of the mine, parts of the victim's footwear and the small bones in the victim's foot. This debris creates wounds typical of similar secondary blast effects or fragmentation. Special footwear, including combat boots or so-called "blast boots", is only moderately protective against the destructive effects of blast mines, and the loss of a foot is a typical outcome.

Blast mines have little effect on armoured vehicles, but can damage a wheeled vehicle if it runs directly over the mine. Small blast mines will severely damage a tire, rendering it irreparable while some types could also damage adjacent running gear.

Components

Typical components of an anti-personnel blast mine Anti-Personnel Mine (Blast Type).svg
Typical components of an anti-personnel blast mine

Mine casing

The mine casing houses the components of the mine and protects it from its environment. Early mines, such as the ones used in the World War II era, had casings made of steel or aluminium. However, by the middle of the conflict, the British Army was using the first, practical, portable metal detector – the Polish mine detector. The Germans responded with mines that had a wooden or glass casing to make detection harder.

Wooden mines had been used by the Soviets in 1939, before the appearance of metal detectors, to save steel. Some, like the PP Mi-D mine, continued to be used into the 1980s as they were easy to make and hard to detect. Wood has the disadvantage of rotting and splitting, rendering the mine non-functional after a comparatively short time in the ground (or the advantage, in that the mine can be considered self-disabling, and will be less likely to cause unintended injuries years later).

Mines manufactured after the 1950s generally use plastic casings to hinder detection by electronic mine detectors. Some, referred to as minimum metal mines, are constructed with as little metal as possible – often around 1 gram (0.035 oz) – to make them difficult to detect. Mines containing absolutely no metal have been produced, but are uncommon. By its nature, a mine without any metal components in it cannot be found using a metal detector.

Pressure plate/fuze mechanism

The fuze mechanism is designed to set off the detonator, either by striking it with a spring-loaded firing pin, compressing a friction sensitive pyrotechnic composition, or by passing an electric charge through it. Most mines employ a spring-loaded striker that hits a stab detonator when activated by the victim. Typically, the detonator contains a tiny pellet of lead azide. The fuze is the most complicated component in any mine, although the amount of effort required to design and manufacture a simple fuze mechanism is quite low, similar to the retraction mechanism in a ballpoint pen.[ citation needed ] More sophisticated examples, such as the Italian SB-33 mine, have a fuze mechanism that detonates the mine if subject to gradual, steady pressure, but locks the fuze if subject to a sudden shock. This defeats one of the main methods of clearing a path through a minefield – detonating the mines with explosive devices, such as mine-clearing line charges.

Booster

The booster charge is a highly sensitive explosive that will activate easily when subjected to the shock of the detonator. Typically, a pea-sized pellet of RDX is used. The purpose of the booster is to amplify the shock of the detonator and initiate the main explosive charge.

Main charge

The main charge consists of a stable explosive that is detonated by the booster charge. This is necessary, because making a mine entirely out of a highly sensitive detonator or booster explosive would be more expensive, and make the device more sensitive and thereby susceptible to accidental detonation. In most AP blast mines TNT, Composition B or phlegmatized RDX are used. On a US M14 mine, 29 grams of tetryl is used, while 240 grams of TNT is used in a Russian PMN mine.

Deployment

Anti-personnel blast mines are the most common type and are typically deployed on the surface (hidden by leaves or rocks) or buried under soil at a depth of 10–15 cm. They are activated by pressure, i.e. when the victim steps on them, but it could also be a vehicle driving over them.

They were designed for use as area denial weapons. Weapons of this type are supposed to deny opposing military forces access to a specific area.

Fragmentation mines

Stockmine M43 in a display case surrounded by other, less lethal items Memorial du Souvenir 16.JPG
Stockmine M43 in a display case surrounded by other, less lethal items

While blast mines are designed to cause severe injury to one person, fragmentation mines (such as the World War II era German S-mine) are designed to project fragments across a wide area, causing fragmentation wounds to nearby personnel. [6]

Fragmentation mines are generally much larger and heavier than blast mines, and contain a large amount (often several kilograms) of ferrous metal. As such, they are easy to detect if the environment is not too heavily contaminated with iron.

Effect

These mines are deemed to be more efficient than purely "blast effect" mines, because the shrapnel covers a greater area, potentially injuring more combatants.

The shrapnel from these mines can even disable some armoured vehicles, by puncturing their tires and—in the case of soft-skinned vehicles—also penetrating the skin and damaging internal components or injuring personnel. Because fragmentation mines generally contain a much larger charge than blast mines, they can cause severe damage to an unarmoured vehicle which runs directly over one.

Types of fragmentation mine

Stake

These mines (such as the Russian POMZ) are entirely above ground, having a fragmenting warhead mounted on a stake at a suitable height, concealed by vegetation or rubbish and triggered by one or more tripwires.

Bounding

Bounding mines have a small lifting charge that, when activated, launches the main body of the mine out of the ground before it detonates at around chest height. This produces a more lethal spray of shrapnel over a larger area. One such mine – the US M16 mine – can cause injuries up to 200 metres (660 ft) away. The steel shrapnel makes bounding mines easy to detect, so they may be surrounded by minimum metal mines to make mine clearance harder.

Directional

Directional fragmentation weapons (such as the M18 Claymore) differ from other types in that they are designed to direct their fragments only in a limited arc. They are placed so that the blast will be directed at the target area and away from friendly forces. This design also allows forces to protect themselves by placing these types of mines near their own positions, but facing the enemy. They are triggered in a conventional manner with either tripwire or command detonation. They are generally referred to as claymore mines from the US mine of this type.

Improvised explosive devices

In the conflicts of the 21st century, anti-personnel improvised explosive devices (IED) have replaced conventional or military landmines as the source of injury to dismounted (pedestrian) soldiers and civilians. These injuries were recently reported in BMJ Open to be far worse than landmines, resulting in multiple limb amputations and lower body mutilation. [7] This combination of injuries has been given the name "Dismounted Complex Blast Injury" and is thought to be the worst survivable injury ever seen in war. [8]

Other mine types

Chemical mine.jpg
Chemical Mine No 1 Mk 1 diagram.jpg
British chemical mine c1940: Chemical Mine No 1 Mk 1

During World War II, flame mines known as the flame fougasse were produced by the British during the invasion crisis of 1940. Later, the Soviets produced a flame-mine, called the FOG-1. This was copied by the Germans to produce the Abwehrflammenwerfer 42, these devices were effectively disposable, trip-wire triggered flamethrowers.

Chemical mines have also been made. They were made by Britain, the US and the Soviet Union during World War II, but never deployed. During the Cold War, the US produced the M23 chemical mine containing VX. A small explosive charge burst the mine open and dispersed the chemical when the mine was triggered.

Examples

World War II anti-personnel mines
Post-War, US anti-personnel mines
Post-War, Russian anti-personnel mines
Post-War, British anti-personnel mines
Yugoslav anti-personnel mines

Patentability

Anti-personnel mines are a typical example of subject-matter excluded from patentability under the European Patent Convention, because the publication or exploitation of such inventions are contrary to the "ordre public" and/or morality (Article 53(a) EPC). [9]

Criticism of name

The author Rob Nixon has criticized the use of the adjective "anti-personnel" to describe mines, noting that the word "personnel" signifies people engaged in a particular organization, whereas in reality "four-fifths of mine casualties are civilians", in particular children. Thus, he argues, the name "flatters their accuracy by implying that they target an organization, military or otherwise." [10]

See also

Related Research Articles

<span class="mw-page-title-main">Land mine</span> Explosive weapon, concealed under or on the ground

A land mine, or landmine, is an explosive weapon concealed under or camouflaged on the ground, and designed to destroy or disable enemy targets, ranging from combatants to vehicles and tanks, as they pass over or near it.

<span class="mw-page-title-main">Claymore mine</span> American directional anti-personnel mine

The Claymore mine is a directional anti-personnel mine developed for the United States Armed Forces. Its inventor, Norman MacLeod, named the mine after a large medieval Scottish sword. Unlike a conventional land mine, the Claymore may be command-detonated, and directional, shooting a wide pattern of metal balls into a kill zone. The Claymore can also be activated by a booby-trap tripwire firing system for use in area denial operations.

<span class="mw-page-title-main">Anti-tank mine</span> Type of land mine designed to destroy tanks

In anti-tank warfare, an anti-tank mine is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles.

Type 72 Non-Metallic is a Chinese circular, plastic bodied landmine which is designed to damage or destroy a vehicle by blast effect.

<span class="mw-page-title-main">MON-50</span> Anti-personnel mine

The MON-50 is a Soviet rectangular, slightly concave, plastic bodied, directional type of anti-personnel mine designed to wound or kill by explosive fragmentation. It first entered service in 1965 and is a copy of the American M18 Claymore with a few differences. Its name is derived from Russian мина осколочная направленного, "directional fragmentation mine".

<span class="mw-page-title-main">MRUD</span>

The MRUD is a Yugoslav design of plastic bodied, convex rectangular directional type anti-personnel mine designed to wound or kill by fragmentation. It is broadly similar to the M18A1 Claymore mine.

<span class="mw-page-title-main">MON-90</span> Soviet anti-personnel mine

The MON-90 is a Claymore-shaped, plastic bodied, directional type of anti-personnel mine designed in the Soviet Union. It is designed to wound or kill by fragmentation. The mine is similar in appearance to the MON-50, but is approximately twice the size with a much greater depth.

<span class="mw-page-title-main">M16 mine</span> Bounding anti-personnel mine

The M16 mine is a United States-made bounding anti-personnel mine. It was based on captured plans of the World War II era German S-mine and has similar performance. The mine consists of a cast iron body in a thin steel sleeve. A central fuze well on the top of the mine is normally fitted with a pronged M605 pressure/tension (tripwire) fuze. Sufficient pressure on the prongs or tension on an attached tripwire causes the release of a striker. The freed striker is forced into a percussion cap which ignites a short pyrotechnic delay. The purpose of this delay is to allow the victim to move off the top of the mine, to prevent its upward movement from being blocked. Once the delay has burned through, a 4.5-gram black powder charge is ignited, which launches the inner iron body of the mine up into the air. The charge also ignites a second pair of pyrotechnic delays.

The POMZ, POMZ-2 and POMZ-2M are three types of Soviet-made stake mounted anti-personnel fragmentation mine. The POMZ mine was used during the Second World War. It was superseded by the POMZ-2, and later by the improved POMZ-2M. These mines have been used in numerous conflicts, including the Vietnam War and the Korean War.

<span class="mw-page-title-main">PROM-1</span>

The PROM-1 is a Yugoslavian manufactured bounding anti-personnel mine. It consists of a cylindrical body with a pronged fuze inserted into the top of the mine. It is broadly similar in operation to the German S-mine.

<span class="mw-page-title-main">PMN mine</span> Series of Soviet anti-personnel mines

The PMN series of blast anti-personnel mines were designed and manufactured in the Soviet Union. They are one of the most widely used and commonly found devices during demining operations. They are sometimes nicknamed "black widow" because of their dark casings.

<span class="mw-page-title-main">VS-50 mine</span>

The VS-50 is a circular plastic-cased anti-personnel blast mine that entered production in 1985. It was formerly made by the now-defunct Valsella Meccanotecnica SpA, an Italian high-tech defence company specialized in area denial systems. The company also the made the Valmara 69, and was one of the first to implement plastic construction for landmines. The VS-50's design is similar to that of the TS-50 and VS-MK2 mines. It is blast resistant and can be used in a minimum metal configuration. Though unlikely to kill, its explosive charge is quite sufficient to destroy the victim's foot, being capable of penetrating 5 mm of mild steel leaving an 80 mm-diameter hole.

<span class="mw-page-title-main">M19 mine</span>

The M19 is a large square plastic cased United States anti-tank blast mine. Intended to replace the M15 mine, the design dates from the mid-1960s and contains only two metal components: the copper detonator capsule and a stainless steel firing pin which weighs 2.86 grams. It is a minimum metal mine, which makes it very difficult to detect after it has been emplaced. This mine is produced under licence in Chile, South Korea and Turkey. A copy is produced in Iran. It is found in Afghanistan, Angola, Chad, Chile, Cyprus, Iran, Iraq, Jordan, South Korea, Lebanon, the Western Sahara, and Zambia.

The MBV-78-A2 is a small cylindrical Vietnamese anti-personnel fragmentation stake mine. It is unrelated to the MBV-78-A1. The mine has a large plastic head which contains the main charge wrapped around the detonator. A fragmentation layer of steel pieces set into wax surrounds the main charge. The plastic head has two mounting lugs for stake mounting the mine. A Vietnamese copy of the Russian MUV fuze is typically used with the mine, although other fuzes could be used.

The Mini MS-803 is a small South African produced Claymore type landmine. The design is very simple, with a convex brown polystyrene case containing a PE9 plastic explosive charge with three hundred 6 x 8 millimeter cylindrical steel fragments embedded into it. The mine is supported by two pairs of wire legs, which can be used to stack the mines. On the top of the mine is a small hole for inserting a detonator, which is surrounded with a PETN booster charge. The mine is normally used with an S4 electrical detonator connected to an M57 electrical firing device which is also used with the similar but larger Shrapnel mine Mk 2. The mine could also be used with MUV type pull detonators and tripwires, but after the Ottawa mine ban treaty South Africa has said that it will not use this mine with victim activated fuses.

The VAR/40, VAR/100 and VAR/100/SP are Italian anti-personnel blast landmines produced by the Tecnovar italiana S.p.A. company.

The HAMDY mine is an Egyptian directional fragmentation mine based on the US Claymore mine and produced by the Maasara Company. The mine consists of a rectangular sand colored plastic main body with a convex face, inside which is a layer of approximately 700 steel fragments embedded in a main charge of cast explosive. The mine is supported by two sets of scissor type legs. On the top of the mine is a crude peep sight and two detonator wells, designed to accept electrical command detonators or MUV style trip fuzes. When triggered the mine scatters fragments in an arc of 60 degrees to a range of 50 meters and a height of approximately two meters.

The MAPED F1 is a claymore-shaped plastic-bodied directional anti-personnel mine which is designed to wound or kill by fragmentation. It has been the standard directional anti-personnel mine of the French army since the late 1970s.

The M432 is a Portuguese bounding anti-personnel mine, which traces the roots of its design to the Second World War German S-mine, although it is probably more directly related to the Belgian NR 442 mine and United States M16 mine. As of 2004, all operational stocks of the mine have been destroyed, although some may have been retained for training purposes.

<span class="mw-page-title-main">A.P. Shrapnel Mine</span> Bounding mine

The A.P. (anti-personnel) Shrapnel Mine is a British bounding mine of World War II.

References

  1. ICRC (June 2006). "Anti-personnel Landmines: Friend or Foe?" (PDF). ICRC. Retrieved 16 April 2023.
  2. "Types of landmines". GICHD. Retrieved 16 April 2023.
  3. "The Ottawa Convention: Signatories and States-Parties | Arms Control Association". www.armscontrol.org. Retrieved 16 April 2023.
  4. "The Mine Ban Treaty: How the world decided to bury the use of mines". Arab News. 3 April 2023. Retrieved 16 April 2023.
  5. "Marine wins battle for bungalow". 5 March 2009 via news.bbc.co.uk.
  6. "How Axis Mines Work" Popular Mechanics, April 1944, p. 131
  7. Smith S, et al. (2017). "Injury profile suffered by targets of antipersonnel improvised explosive devices: prospective cohort study". BMJ Open. 7 (7): e014697. doi:10.1136/bmjopen-2016-014697. PMC   5691184 . PMID   28835410.
  8. Cannon JW, et al. (2016). "Dismounted Complex Blast Injuries: A Comprehensive Review of the Modern Combat Experience". J Am Coll Surg. 223 (4): 652–664. doi:10.1016/j.jamcollsurg.2016.07.009. PMID   27481095 . Retrieved 28 August 2017.
  9. Guidelines for Examination in the EPO , section g-ii, 4.1 , "Matter contrary to "ordre public" or morality".
  10. Nixon, Rob (2011). Slow violence and the environmentalism of the poor. Cambridge, Mass: Harvard University Press. pp. 222–223. ISBN   9780674049307.