M16 mine

Last updated
M16 mine
M16a2mine.png
A cutaway of an M16A2 mine
TypeBounding anti-personnel mine
Place of originUnited States
Service history
In service1957–Present
Used bySee Description
Wars Vietnam War, other
Production history
Produced1950's-1974
No. builtMillions
VariantsM16A1
  • M16A2
  • KM16A2
Specifications
Mass4.1 kg
Height127 mm
Diameter102 mm

Filling TNT
Filling weight1 LB
Detonation
mechanism
Various, including:
S.Mi.Z 35 (pressure),
Z.Z.35 (pull),
Z.U.Z.Z. (tension release),
E.S.Mi.Z (pressure and electric)

The M16 mine is a United States-made bounding anti-personnel mine. It was based on captured plans of the World War II era German S-mine and has similar performance. The mine consists of a cast iron body in a thin steel sleeve. A central fuze well on the top of the mine is normally fitted with a pronged M605 pressure/tension (tripwire) fuze. Sufficient pressure on the prongs or tension on an attached tripwire causes the release of a striker. The freed striker is forced into a percussion cap which ignites a short pyrotechnic delay. The purpose of this delay is to allow the victim to move off the top of the mine, to prevent its upward movement from being blocked. Once the delay has burned through, a 4.5-gram black powder charge is ignited, which launches the inner iron body of the mine up into the air (leaving behind the steel outer sleeve). The charge also ignites a second pair of pyrotechnic delays.

Contents

The mine rises to a height of 0.3 to 1.7 meters [1] before one or both of the pyrotechnic delays detonates the main charge of the mine, which sprays high-speed metal fragments 360° around the point of detonation. These metal fragments have an expected casualty radius of 27 meters for the M16 and M16A1 mines, and out to 30 meters for the M16A2 mine. [2]

The M16 and M16A1 mines are similar; the M16A1 has redesigned detonators and boosters but remains largely the same. The M16A2 is considerably different, having an offset fuse well and only a single pyrotechnic delay element. This change reduces the weight of the mine considerably (2.83 kilograms) while allowing it to carry a slightly larger main charge (601 grams)

According to the United States Army, one platoon of combat engineers assisted by a hauling vehicle was expected to be able to emplace 300 M-16 mines in 120 minutes, creating a minefield 300 meters long and 50 meters wide with a linear density of one mine per meter of front. [3]

The mines were sold widely and copies were produced in several countries including Greece, India, Myanmar, South Korea and Turkey. They can be found in the 'wild' in Angola, Burma, Cambodia, Chile, Cyprus, Eritrea, Ethiopia, Iran, Iraq, Korea, Lebanon, Laos, Malawi, Mozambique, Myanmar, Oman, Rwanda, Somalia, Thailand, Vietnam, the Western Sahara, and Zambia. The United States retains stocks of M16A2 mines for use in any resumption of war in Korea. [4]

Variants

Demining

When emplaced, most of an M16 mine is buried underground so it can be extremely difficult to spot them visually, particularly in areas of long grass, heavy undergrowth or other debris. The M16 contains large amounts of metal, so is very easy to detect using a mine detector. However, it is important to note that the act of moving the detection head over the ground may strike the prongs and trigger the mine. In any case, other minimum metal mines may have been planted near to an M16 in order to protect it from mine clearance personnel. Additionally, if long tripwires are fitted, the M16 may "see" the deminers before they have chance to find it. When tracking the path of tripwires fitted to any bounding mine, great care must be taken: it is quite possible that additional antipersonnel blast mines (e.g. the M14) may have been buried beneath its path. An extra complicating factor is that some M16 mines may have been fitted with an anti-handling device e.g. placing an M26 grenade underneath it with an M5 pressure-release boobytrap firing device screwed into it. [5] Deliberately triggering the mines from cover, using some form of grappling hook attached to a long rope, may be useful in some varied situations and provide an initial way into the minefield before further clearance work begins.

See also

Related Research Articles

Firing pin Part of the firing mechanism in a firearm

A firing pin or striker is part of the firing mechanism used in a firearm or explosive device, designed to ignite combustions/detonations by delivering an impact force to shock-sensitive compounds known as primers. Firing pins may take many forms, though the types used in fuzes for single-use devices generally have a sharpened point. In contrast, firing pins used in firearms usually have a small, rounded portion designed to strike the primer of a cartridge, detonating the priming compound, which then ignites the propellant (inside) or fires the detonator and booster.

Valmara 69 Bouncing anti-personnel mine

Valmara 69 or V-69 is an Italian bounding anti-personnel mine manufactured by Valsella. The mine was developed from the V-59 mine, and although the mine is no longer produced in Italy, a number of copies were produced in other countries e.g. the "SPM-1" manufactured by Singapore.

M14 mine

The M14 mine "Toepopper" is a small anti-personnel land mine first deployed by the United States circa 1955. The M14 mechanism uses a belleville spring to flip a firing pin downwards into a stab detonator when pressure is applied. Once deployed, the M14 is very difficult to detect because it is a minimum metal mine, i.e. most of its components are plastic. Because of this, the design was later modified to ease mine clearance via the addition of a steel washer, glued onto the base of the mine.

SB-33 mine

The SB-33 is a small Italian minimum metal blast type anti-personnel mine formerly manufactured by Misar, that entered service in 1977. The SB-33 can be emplaced by hand or scattered using the helicopter mounted SY-AT system.

Anti-personnel mine Form of land mine designed for use against humans

Anti-personnel mines are a form of mine designed for use against humans, as opposed to anti-tank mines, which are designed for use against vehicles. Anti-personnel mines may be classified into blast mines or fragmentation mines, the latter may or may not be a bounding mine.

The POMZ, POMZ-2 and POMZ-2M are three types of Soviet-made stake mounted anti-personnel fragmentation mine. The POMZ mine was used during the Second World War. It was superseded by the POMZ-2, and later by the improved POMZ-2M. These mines have been used in numerous conflicts, including the Vietnam War and the Korean War.

PROM-1

The PROM-1 is a Yugoslavian manufactured bounding anti-personnel mine. It consists of a cylindrical body with a pronged fuze inserted into the top of the mine. It is broadly similar in operation to the German S-mine.

VS-50 mine

The VS-50 is a circular plastic cased anti-personnel blast mine that entered production in 1985, formerly manufactured by the now-defunct Valsella Meccanotecnica SpA, an Italian high-tech defence industry specialized in area denial systems which was also the manufacturer of the Valmara 69 and one of the first industries in the world to implement plastic construction for landmines. The design is similar to the TS-50 and VS-MK2 mine. It is blast resistant and can be used in a minimum metal configuration. Though unlikely to kill, the explosive charge contained within a VS-50 is quite sufficient to destroy the victim's foot: the blast is capable of penetrating 5 mm of mild steel leaving an 80 mm-diameter hole.

M19 mine

The M19 is a large square plastic cased United States anti-tank blast mine. Intended to replace the M15 mine, the design dates from the mid-1960s and contains only two metal components: the copper detonator capsule and a stainless steel firing pin which weighs 2.86 grams. It is a minimum metal mine, which makes it very difficult to detect after it has been emplaced. This mine is produced under licence in Chile, South Korea and Turkey. A copy is produced in Iran. It is found in Afghanistan, Angola, Chad, Chile, Cyprus, Iran, Iraq, Jordan, South Korea, Lebanon, the Western Sahara, and Zambia.

The M6, M6A1 and M6A2 are a series of metal-cased, circular, heavy anti-tank landmines produced by the United States from May 1944 to May 1945. They were superseded in service by the larger M15 mine. The mine is normally painted olive green and has a large central pressure plate. In the center of the pressure plate is an arming plug that has an arming lever with three settings: ARMED, DANGER and SAFE. The pressure plate rests on a concertina-like structure, which when enough force is applied is compressed. Compression results in a transfer plate under the arming plug pressing downwards onto a belleville spring which inverts, flipping the firing pin into the detonator, which triggers the adjacent explosive booster and main explosive charge.

Valmara 59

The Valmara 59 is a large cylindrical Italian bounding anti-personnel mine. It is the first in the "Valmara" family of mines produced by Valsella Meccanotecnica, and was followed by the Valmara 69 and VS-JAP. The mine's body is metal with a distinctive five-pronged head. The central prong has a hole, to allow the threading a trip wire. The inner body of the mine has a main charge surrounded with approximately 1,000 steel cubes, below which is a steel wire connecting it to the base of the mine. When the mine is triggered a small charge launches the mine into the air approximately 45 cm before the steel wire is pulled taut, the jolt of which pulls a striker into the detonator. A secondary time fuse triggers the mine after three seconds if it has not detonated after being triggered.

VS-JAP mine

The VS-JAP is an Italian bounding anti-personnel mine. It is the latest of the Valmara family of bounding mines that includes the Valmara 59 and Valmara 69. The mine has a waterproof plastic faceted cylindrical body with a three-pronged cap, with a central fixing point for a tripwire. The fuze is triggered via downward or sideways pressure.

The M61 or Model 61 and M63 or Model 63 are French anti-personnel stake fragmentation stake mines the mines are sometimes called piquet (picket). The M61 is slightly larger than the M63, but otherwise the mines are similar in appearance and operation. The mines have plastic cases, and use the ALPR ID 59 fuze, which is also used in the MI AP DV 59 mine, it can also be fitted with a tripwire fuze. The mines can be fitted with a plastic detonator making the mine very difficult to detect.

The MBV-78-A2 is a small cylindrical Vietnamese anti-personnel fragmentation stake mine. It is unrelated to the MBV-78-A1. The mine has a large plastic head which contains the main charge wrapped around the detonator. A fragmentation layer of steel pieces set into wax surrounds the main charge. The plastic head has two mounting lugs for stake mounting the mine. A Vietnamese copy of the Russian MUV fuze is typically used with the mine, although other fuzes could be used.

Stock mine

The Stockmine, also Betonmine, was a German anti-personnel stake mine used during the Second World War. It consisted of a cylindrical concrete main body on top of a short wooden stake. The concrete head contained a small TNT bursting charge, and was embedded with a number of metal fragments. A fuze is fitted to a central fuze well on the top of the mine. It could be used with a range of fuzes including the ZZ 35, ZZ 42 and ZU ZZ 35 that would trigger on either a tripwire pull or release.

M2 mine Antipersonnel mine

The M2 is a United States bounding anti-personnel mine used during World War II. A number of variants of the mine were produced and although the mine is no longer in US service, it can be found in Cyprus, Iran, Iraq, Korea, Laos, Oman, Rwanda, Tunisia and the Western Sahara. Copies of the mine were produced by Belgium, Pakistan (P7), Portugal (M/966) and Taiwan.

The VAR/40, VAR/100 and VAR/100/SP are Italian anti-personnel blast landmines produced by the Tecnovar italiana S.p.A. company.

The BM/85 is an Italian blast resistant bounding anti-personnel mine that was produced by Tecnovar italiana SpA. The mine is cylindrical with a three pronged tilt/pressure fuze on the top with a central post for attaching a tripwire. A plastic safety clip prevents the fuze from tilting when in transit. Once the pressure clip is removed the mine is armed. Once the fuze is pulled sideways by a trip wire or by downward pressure, the mine is triggered. A small charge launches the mine to a height of about 0.45 meters where it explodes scattering 1,000 fragments to a lethal radius of about 25 meters.

The M432 is a Portuguese bounding anti-personnel mine, which traces the roots of its design to the Second World War German S-mine, although it is probably more directly related to the Belgian NR 442 mine and United States M16 mine. As of 2004, all operational stocks of the mine have been destroyed, although some may have been retained for training purposes.

PMA-2 mine

The PMA-2 is a Yugoslavian blast antipersonnel mine. Sometimes referred to as the 'Pašteta', due to its superficial resemblance to a meat-pâté tin. The mine is constructed from dark green plastic, with a distinctive plunger which has six petals radiating from it.

References

  1. OPERATOR'S AND UNIT MAINTENANCE MANUAL Technical Manual 9-1345-203-12. Headquarters, Department of the Army. 1995.
  2. "M14 / M16 Anti-Personnel (AP) Mines". GlobalSecurity.org. Retrieved 6 May 2012.
  3. Handbook of Employment Concepts for Mine Warfare Systems. (1986). United States: U.S. Army Engineer Center and School. Pg 53
  4. "Landmine and Cluster Munition Monitor, Section: Stockpiling". icbl.org. Retrieved 4 May 2015.
  5. "The Minefield: An Australian Tragedy in America's Vietnam War". japanfocus.org. Retrieved 4 May 2015.