This article needs additional citations for verification .(August 2007) |
Arc mapping is a technique used in fire investigation [1] that relies on finding the locations of electrical arcs and other electrical faults that occurred during a fire; the locations of the electrical faults can then, under some circumstances, indicate the progression of the fire over time. [2] It is usually performed by a forensic electrical engineer. It The technique relies on the assumption that, when heat from fire (or from hot gases caused by the fire) impinges on an electrical line (whether or not protected by a conduit), it will melt the wire insulation and cause an electrical fault at the first point that it reaches on the electrical line. For this to occur, the electrical line must be energized at the time that fire hits it.
Arc mapping often aims to determine the point of origin of the fire. A common assumption used in reaching this goal is that the fire expands uniformly in all directions as it burns, and maintains a circular shape centered on the point of origin; therefore, when an electrical fault occurs on an electrical line, the point of origin is on a perpendicular to that point. Contrary to this assumption, however, in many cases fire does not extend uniformly; in particular, large local fuel loads, venting, and air currents have a strong effect on fire progression.
Several other factors affect the locations where electrical faults occur. Electrical faults do not always occur where fire first reaches a conduit, but preferentially occur at bends in a conduit or at locations where wires are pressed together. The elevation of an electrical line has a strong effect on its exposure to heat, since temperatures in a fire are generally highest near ceiling level, except in the immediate vicinity of the point of origin. Protection from the fire is an important consideration: being located within a wall or being covered in fiberglass insulation will offer some protection to an electrical line, and will delay electrical faults.
An electrical fault will only occur if an electrical line is energized - more specifically, if two conductors are at different potentials, and have the capacity to source/sink significant current. An electrical arcing event will often (though not always) cause a loss of power downstream on the electrical line, such as by severing the conductors or tripping a circuit breaker; as a result, a significant part of arc-map analysis is determining the order in which sections of electrical lines lost power. In most cases, the electrical faults that occurred furthest downstream occurred first. Electrical faults can also energize conductors or components that are not normally energized, such as conduits (normally grounded). ("Energized" usually refers to a conductor being connected to hot power, as opposed to neutral. More generally, electrical faults occur between points at different potentials, such as between hot and neutral, between hot and ground, or between hots of two different phases.)
Investigators distinguish between electrical arcing and copper that melted due to the high temperatures of the fire. The term "electrical arcing", in fire investigation, often refers to "melted copper that indicates that electrical arcing occurred". "Melted copper" generally refers not to copper that is currently melted, but to "previously melted, resolidified copper". NFPA 921 and Kirk's Fire Investigation give some guidelines and illustrations on distinguishing between electrical arcing and other melted copper; however, these strict guidelines occasion much debate.
An electrician is a tradesman specializing in electrical wiring of buildings, transmission lines, stationary machines, and related equipment. Electricians may be employed in the installation of new electrical components or the maintenance and repair of existing electrical infrastructure. Electricians may also specialize in wiring ships, airplanes, and other mobile platforms, as well as data and cable lines.
A short circuit is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit. The opposite of a short circuit is an "open circuit", which is an infinite resistance between two nodes.
In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.
Electrical wiring in North America follows regulations and standards for installation of building wiring which ultimately provides mains electricity.
A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.
The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Protection Association (NFPA), a private trade association. Despite the use of the term "national", it is not a federal law. It is typically adopted by states and municipalities in an effort to standardize their enforcement of safe electrical practices. In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.
An arc-fault circuit interrupter (AFCI) or arc-fault detection device (AFDD) is a circuit breaker that breaks the circuit when it detects the electric arcs that are a signature of loose connections in home wiring. Loose connections, which can develop over time, can sometimes become hot enough to ignite house fires. An AFCI selectively distinguishes between a harmless arc, and a potentially dangerous arc.
Ground and neutral are circuit conductors used in alternating current electrical systems. The ground circuit is connected to earth, and neutral circuit is usually connected to ground. As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures. Current carried on a grounding conductor can result in objectionable or dangerous voltages appearing on equipment enclosures, so the installation of grounding conductors and neutral conductors is carefully defined in electrical regulations. Where a neutral conductor is used also to connect equipment enclosures to earth, care must be taken that the neutral conductor never rises to a high voltage with respect to local ground.
Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.
High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.
A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.
An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the Earth's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary considerably among countries, though most follow the recommendations of the International Electrotechnical Commission. Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.
NFPA 70E, titled Standard for Electrical Safety in the Workplace, is a standard of the National Fire Protection Association (NFPA). The document covers electrical safety requirements for employees. The NFPA is best known for publishing the National Electrical Code.
Mineral-insulated copper-clad cable is a variety of electrical cable made from copper conductors inside a copper sheath, insulated by inorganic magnesium oxide powder. The name is often abbreviated to MICC or MI cable, and colloquially known as pyro. A similar product sheathed with metals other than copper is called mineral insulated metal sheathed (MIMS) cable.
Fire investigation, sometimes referred to as origin and cause investigation, is the analysis of fire-related incidents. After firefighters extinguish a fire, an investigation is launched to determine the origin and cause of the fire or explosion. Investigations of such incidents require a systematic approach and knowledge of basic fire science.
Forensic electrical engineering is a branch of forensic engineering, and is concerned with investigating electrical failures and accidents in a legal context. Many forensic electrical engineering investigations apply to fires suspected to be caused by electrical failures. Forensic electrical engineers are most commonly retained by insurance companies or attorneys representing insurance companies, or by manufacturers or contractors defending themselves against subrogation by insurance companies. Other areas of investigation include accident investigation involving electrocution, and intellectual property disputes such as patent actions. Additionally, since electrical fires are most often cited as the cause for "suspect" fires an electrical engineer is often employed to evaluate the electrical equipment and systems to determine whether the cause of the fire was electrical in nature.
An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.
In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.
Stray voltage is the occurrence of electrical potential between two objects that ideally should not have any voltage difference between them. Small voltages often exist between two grounded objects in separate locations, due to normal current flow in the power system. Large voltages can appear on the enclosures of electrical equipment due to a fault in the electrical power system, such as a failure of insulation.
Telecommunications cables are a type of guided transmission mediums. Cables are usually known to transmit electric energy (AC/DC); however, cables in telecommunications fields are used to transmit electromagnetic waves; they are called electromagnetic wave guides.