Armen Sarvazyan | |
---|---|
Born | |
Alma mater | Moscow State University, Russia |
Known for | Invention of shear-wave elasticity imaging |
Scientific career | |
Fields | Biophysics Biomedical Engineering Elastography |
Institutions | Institute of Biophysics of the USSR Academy of Sciences Rutgers University, NJ, USA Artann Laboratories, NJ, USA |
Armen Sarvazyan (born July 2, 1939) is a biophysicist and entrepreneur, serving as Chief Science Officer of Artann Laboratories. He is known for his work on the use of shear acoustic waves in medical imaging and diagnostics and the invention of shear-wave elasticity imaging (SWEI).
Sarvazyan received the M.S., Ph.D., and D.Sc. degrees in 1964, 1969, and 1983, respectively, from the Moscow State University, Russia, and Institute of Biophysics of the USSR Academy of Sciences. Early in his career, in the 1960s and 1970s, working in the Institute of Biophysics of the USSR Academy of Sciences in Pushchino, he conducted pioneering studies of propagation of shear waves in soft tissues. [1] A couple of decades later, Sarvazyan, in collaboration with academician Oleg Rudenko, proposed a new technology for medical imaging and diagnostics named shear-wave elasticity imaging. [2]
In the 1970s and 1980s, in parallel with the studies of soft tissue biomechanics, he developed ultrasonic devices for the investigation of biomolecular interactions and obtained significant results on thermodynamic characteristics of water in the hydration shell of proteins and nucleic acids. [3] [4] [5]
He continued these studies on the hydration of biopolymers at the Laboratory of Biomolecular Acoustics, which he organized at Rutgers University, NJ, US in 1992. [6]
Beginning in the late 80s, a significant part of Sarvazyan's research activities were on the problems of elastography, an emerging technology of medical diagnostics. In 1991–1992, in collaboration with the University of Michigan, Ann Arbor, Sarvazyan conducted pioneering experiments on MRI and ultrasonic elastography. [7] [8] [9] He published several review papers on biophysical basis of elasticity imaging, on soft tissue biomechanics and on acoustical radiation force, which is currently the key component in the majority of elasticity imaging technologies and devices. [10] [11] [12] [13] [14]
During last decade, most of his research activities and publications were on the various medical applications a branch of elastography called mechanical imaging (a.k.a. tactile imaging), developed by Sarvazyan with Vladimir Egorov. [15] [16] [17]
Sarvazyan has published over 200 research papers and book chapters, and edited 6 books. He has been the Principal Investigator of over 30 research projects funded by NIH, NASA, DoD and Bill and Melinda Gates Foundation. He has over 100 U.S. and international patents and invention certificates. [18]
Sarvazyan is the co-founder of several companies specializing in elastography: ProUroCare Medical Inc. (Golden Valley, MN, 1999), Medical Tactile, Inc. (Los Angeles, CA, 2000), SuperSonic Imagine (Aix-en-Province, France, 2005) and Advanced Tactile Imaging, Inc. (Trenton, NJ, 2013). [19] He is also the founder of Artann Laboratories Inc. [20]
Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
Medical ultrasound includes diagnostic techniques using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. The machine used is called an ultrasound machine, a sonograph or an echograph. The visual image formed using this technique is called an ultrasonogram, a sonogram or an echogram.
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.
Elastography is any of a class of medical imaging modalities that map the elastic properties and stiffness of soft tissue. The main idea is that whether the tissue is hard or soft will give diagnostic information about the presence or status of disease. For example, cancerous tumours will often be harder than the surrounding tissue, and diseased livers are stiffer than healthy ones.
Palpation is the process of using one's hands to check the body, especially while perceiving/diagnosing a disease or illness. Usually performed by a health care practitioner, it is the process of feeling an object in or on the body to determine its size, shape, firmness, or location.
Contrast-enhanced ultrasound (CEUS) is the application of ultrasound contrast medium to traditional medical sonography. Ultrasound contrast agents rely on the different ways in which sound waves are reflected from interfaces between substances. This may be the surface of a small air bubble or a more complex structure. Commercially available contrast media are gas-filled microbubbles that are administered intravenously to the systemic circulation. Microbubbles have a high degree of echogenicity. There is a great difference in echogenicity between the gas in the microbubbles and the soft tissue surroundings of the body. Thus, ultrasonic imaging using microbubble contrast agents enhances the ultrasound backscatter, (reflection) of the ultrasound waves, to produce a sonogram with increased contrast due to the high echogenicity difference. Contrast-enhanced ultrasound can be used to image blood perfusion in organs, measure blood flow rate in the heart and other organs, and for other applications.
High-intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that uses non-ionizing ultrasonic waves to heat or ablate tissue. HIFU can be used to increase the flow of blood or lymph or to destroy tissue, such as tumors, via thermal and mechanical mechanisms. Given the prevalence and relatively low cost of ultrasound generation mechanisms, the premise of HIFU is that it is expected to be a non-invasive and low-cost therapy that can at least outperform care in the operating room.
Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.
A scanning acoustic microscope (SAM) is a device which uses focused sound to investigate, measure, or image an object. It is commonly used in failure analysis and non-destructive evaluation. It also has applications in biological and medical research. The semiconductor industry has found the SAM useful in detecting voids, cracks, and delaminations within microelectronic packages.
Therapeutic ultrasound refers generally to any type of ultrasonic procedure that uses ultrasound for therapeutic benefit. Physiotherapeutic ultrasound was introduced into clinical practice in the 1950s, with lithotripsy introduced in the 1980s. Others are at various stages in transitioning from research to clinical use: HIFU, targeted ultrasound drug delivery, trans-dermal ultrasound drug delivery, ultrasound hemostasis, cancer therapy, and ultrasound assisted thrombolysis It may use focused ultrasound or unfocused ultrasound.
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz. Ultrasound energy requires matter or a medium with particles to vibrate to conduct or propagate its energy. The energy generally travels through most mediums in the form of a wave in which particles are deformed or displaced by the energy then reestablished after the energy passes. Types of waves include shear, surface, and longitudinal waves with the latter being one of the most common used in biological applications. The characteristics of the traveling ultrasound energy greatly depend on the medium that it is traveling through. While ultrasound waves propagate through a medium, the amplitude of the wave is continually reduced or weakened with the distance it travels. This is known as attenuation and is due to the scattering or deflecting of energy signals as the wave propagates and the conversion of some of the energy to heat energy within the medium. A medium that changes the mechanical energy from the vibrations of the ultrasound energy into thermal or heat energy is called viscoelastic. The properties of ultrasound waves traveling through the medium of biological tissues has been extensively studied in recent years and implemented into many important medical tools.
Acoustic microscopy is microscopy that employs very high or ultra high frequency ultrasound. Acoustic microscopes operate non-destructively and penetrate most solid materials to make visible images of internal features, including defects such as cracks, delaminations and voids.
Mathias Fink, born in 1945 in Grenoble, is a French physicist, professor at ESPCI Paris and member of the French Academy of Sciences.
In the fields of cardiology and medical imaging, speckle tracking echocardiography (STE) is an echocardiographic imaging technique. It analyzes the motion of tissues in the heart by using the naturally occurring speckle pattern in the myocardium.
In medicine, breast imaging is a sub-speciality of diagnostic radiology that involves imaging of the breasts for screening or diagnostic purposes. There are various methods of breast imaging using a variety of technologies as described in detail below. Traditional screening and diagnostic mammography uses x-ray technology and has been the mainstay of breast imaging for many decades. Breast tomosynthesis is a relatively new digital x-ray mammography technique that produces multiple image slices of the breast similar to, but distinct from, computed tomography (CT). Xeromammography and galactography are somewhat outdated technologies that also use x-ray technology and are now used infrequently in the detection of breast cancer. Breast ultrasound is another technology employed in diagnosis and screening that can help differentiate between fluid filled and solid lesions, an important factor to determine if a lesion may be cancerous. Breast MRI is a technology typically reserved for high-risk patients and patients recently diagnosed with breast cancer. Lastly, scintimammography is used in a subgroup of patients who have abnormal mammograms or whose screening is not reliable on the basis of using traditional mammography or ultrasound.
Optical coherence elastography (OCE) is an emerging imaging technique used in biomedical imaging to form pictures of biological tissue in micron and submicron level and maps the biomechanical property of tissue.
Kathryn Radabaugh Nightingale is an American biomedical engineer and academic in the field of medical ultrasound. She is the Theo Pilkington Distinguished Professor of Biomedical Engineering at Duke University, and an elected fellow of the American Institute for Medical and Biological Engineering (AIMBE) and the National Academy of Inventors (NAI).
Elisa Konofagou is a Greek biomedical engineer in the field of medical ultrasound. She is the Robert and Margaret Hariri Professor of Biomedical Engineering and Radiology (Physics) at Columbia University in New York. Konofagou is a fellow of the Acoustical Society of America and the American Institute for Medical and Biological Engineering, and she received the NSF CAREER Award in 2007.
Tomoelastography is a medical imaging technique that provides quantitative maps of the mechanical properties of biological soft tissues with high spatial resolution. It is an advancement of elastography in that it generates unmasked maps of stiffness and viscosity across the entire field of view that can be captured with a given imaging modality. Medical ultrasound and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for elastography. Classical elastography only measures stiffness in a limited region, such as at a depth of 6 cm in the liver or in a selected liver lobe, and thus cannot provide an overview of the adjacent tissues or organs. Tomoelastography, on the other hand, is a radiological imaging method that allows estimation of quantitative mechanical parameters of all organs and structures in the field of view. Moreover, tomoelastography does not rely on a single, specific imaging modality. While it has been introduced and is mostly performed using magnetic resonance elastography (MRE), tomoelastography can be extended to other imaging techniques as well.
Gregg E. Trahey is an American biomedical engineer and academic in the field of medical ultrasound. He is the Robert Plonsey Distinguished Professor of Biomedical Engineering at Duke University. In 2022, he was named a fellow of the Institute of Electrical and Electronics Engineers (IEEE) "for contributions to speckle tracking and acoustic radiation force impulse imaging in medical ultrasound".