In 1933, Edwin H. Armstrong patented a method for generating frequency modulation of radio signals. [1] The Armstrong method generates a double sideband suppressed carrier signal, phase shifts this signal, and then reinserts the carrier to produce a frequency modulated signal.
Frequency modulation generates high quality audio and greatly reduces the amount of noise on the channel when compared with amplitude modulation. Early broadcasters used amplitude modulation because it was easier to generate than frequency modulation and because the receivers were simpler to make. The electronics theory indicated that a frequency modulated signal would have infinite bandwidth; for an amplitude modulated signal, the bandwidth is approximately twice the highest modulating frequency.
Armstrong realized that while a frequency modulated signal would have an infinite bandwidth, only the first few sets of sidebands would be significant; the rest could be ignored. [2] An amplitude modulated voice channel bandwidth would be approximately 6 kilohertz; a common frequency modulated voice channel bandwidth could be 15 kilohertz.
The Armstrong method begins by generating a carrier signal at a very low frequency, say 500 kilohertz. This frequency is below the AM broadcast band and much below the current FM broadcast band of 88 to 108 megahertz. This carrier signal is applied to two stages in the transmitter: a balanced modulator and a mixer.
To understand how a balanced modulator works it is necessary to understand amplitude modulation and how it works. Most people describe amplitude modulation as a method of changing the strength of the carrier (amplitude) in sync with the modulating audio. This is true, the power output does change with modulation, but it changes because any AM modulator generates two sidebands, one above and one below the carrier. As power goes into these sidebands, the power output increases. The amplitude modulated signal, then, consists of a constant strength carrier and two sidebands. The sidebands carry the information and the carrier just goes along for the ride. The carrier can be removed at the transmitter and reinserted at the receiver to allow the transmitter to put all the power in the sidebands.
A frequency modulator also generates sidebands, but instead of one sideband on each side of the carrier, it generates many sidebands on each side of the carrier. The FM bandwidth is wider because of the many sidebands. The power output from an FM transmitter is constant with modulation, so as power goes into the sidebands, the carrier power is reduced.
A balanced modulator mixes the audio signal and the radio frequency carrier, but suppresses the carrier, leaving only the sidebands. The output from the balanced modulator is a double sideband suppressed carrier signal and it contains all the information that the AM signal has, but without the carrier. It is possible to generate an AM signal by taking the output from the balanced modulator and reinserting the carrier. [3]
In the Armstrong method, the audio signal and the radio frequency carrier signal are applied to the balanced modulator to generate a double sideband suppressed carrier signal. The phase of this output signal is then shifted 90 degrees with respect to the original carrier. The balanced modulator output can either lead or lag the carrier's phase. The double sideband signal and the original carrier signal are then applied to the mixer, and the original carrier—90 degrees out of phase—is reinserted. The output from the mixer is a frequency modulated signal.
Reinserting the carrier without the phase shift produces an AM signal. Reinserting the carrier with the 90 degree phase shift produces a PM signal. If the intelligence is integrated before being applied to the resulting phase modulator, this equivalent to an FM signal.
One of the problems with the Armstrong method is that the frequency deviation—the amount of modulation—must be kept small to minimize distortion. [4] The maximum deviation is a fraction of 1 kilohertz, but FM broadcast requires 75 kilohertz deviation and a typical FM voice channel deviation is 5 kilohertz. To solve this problem, Armstrong multiplied the signal many times to a higher frequency to obtain the necessary deviation. For example, to generate an FM signal with 5 kilohertz deviation at 146.94 megahertz, the transmitter would generate a signal at 6.1225 megahertz with only 0.2 kilohertz deviation, and then multiply the signal 24 times (the so-called "Serrasoid" method, which was created by System Engineering Labs, but was endorsed by Armstrong).
The Armstrong method is no longer used commercially. Frequency modulation is most commonly generated at the operating frequency with the required deviation (the so-called "direct FM" method). While the system was being used in the 1930s and 1940s it provided a high quality FM audio system.

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.
In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.
Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.
In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.
A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle.
Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK, in which the carrier is shifted between two discrete frequencies to transmit binary information.
In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.
In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna with the purpose of signal transmission up to a radio receiver. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.
Demodulation is extracting the original information-bearing signal from a carrier wave. A demodulator is an electronic circuit that is used to recover the information content from the modulated carrier wave. There are many types of modulation so there are many types of demodulators. The signal output from a demodulator may represent sound, images or binary data.
In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.
In telecommunications, a carrier wave, carrier signal, or just carrier, is a periodic waveform that carries no information that has one or more of its properties modified by an information-bearing signal for the purpose of conveying information.
Angle modulation is a class of carrier modulation that is used in telecommunications transmission systems. The class comprises frequency modulation (FM) and phase modulation (PM), and is based on altering the frequency or the phase, respectively, of a carrier signal to encode the message signal. This contrasts with varying the amplitude of the carrier, practiced in amplitude modulation (AM) transmission, the earliest of the major modulation methods used widely in early radio broadcasting.
The International Telecommunication Union uses an internationally agreed system for classifying radio frequency signals. Each type of radio emission is classified according to its bandwidth, method of modulation, nature of the modulating signal, and type of information transmitted on the carrier signal. It is based on characteristics of the signal, not on the transmitter used.
A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40–60 miles depending on the height of transmitter station.
Modulated continuous wave (MCW) is Morse code telegraphy transmitted using an audio tone to modulate a carrier wave.
A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.
In radio, a detector is a device or circuit that extracts information from a modulated radio frequency current or voltage. The term dates from the first three decades of radio (1888–1918). Unlike modern radio stations which transmit sound on an uninterrupted carrier wave, early radio stations transmitted information by radiotelegraphy. The transmitter was switched on and off to produce long or short periods of radio waves, spelling out text messages in Morse code. Therefore, early radio receivers could reproduce the Morse code "dots" and "dashes" by simply distinguishing between the presence or absence of a radio signal. The device that performed this function in the receiver circuit was called a detector. A variety of different detector devices, such as the coherer, electrolytic detector, magnetic detector and the crystal detector, were used during the wireless telegraphy era until superseded by vacuum tube technology.
CCIR System A was the 405-line analog broadcast television system adopted in the UK and Ireland. System A service started in 1936 and was discontinued in 1985.