Arsenite

Last updated

In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−3 and nitrite, NO2 which is bent. [1]

Contents

A number of different arsenite anions are known:

In all of these the geometry around the AsIII centers are approximately trigonal, the lone pair on the arsenic atom is stereochemically active. [1] Well known examples of arsenites include sodium meta-arsenite which contains a polymeric linear anion, (AsO2)n, and silver ortho-arsenite, Ag3AsO3, which contains the trigonal AsO3−3 anion.

Preparation of arsenites

Some arsenite salts can be prepared from an aqueous solution of As2O3. Examples of these are the meta-arsenite salts and at low temperature, hydrogen arsenite salts can be prepared, such as Na2H2As4O8, NaAsO2·4H2O, Na2HAsO3·5H2O and Na5(HAsO3)(AsO3)·12H2O. [4]

Arsenite minerals

A number of minerals contain arsenite anions: reinerite, Zn3(AsO3)2; [2] finnemanite, Pb5Cl(AsO3)3; [2] paulmooreite, Pb2As2O5; [2] stenhuggarite, CaFeSbAs2O7 (contains a complex polymeric anion); [2] schneiderhöhnite, FeII
FeIII
3
(AsO3)(As2O5)2; [5] magnussonite, Mn5(OH)(AsO3)3; [2] trippkeite, CuAs2O4; [2] trigonite, Pb3Mn(AsO3)2(HAsO3); [2] tooeleite, Fe6(AsO3)4(SO4)(OH)4·4H2O. [6]

Arsenites in the environment

Arsenic can enter groundwater due to naturally occurring arsenic at deeper levels or from mine workings. Arsenic(III) can be removed from water by a number of methods, oxidation of AsIII to AsV for example with chlorine followed by coagulation with for example iron(III) sulfate. Other methods include ion-exchange and filtration. Filtration is only effective if arsenic is present as particulates, if the arsenite is in solution it passes through the filtration membrane. [7]

Uses

Sodium arsenite is used in the water gas shift reaction to remove carbon dioxide. Fowler's solution first introduced in the 18th century was made up from As2O3 [8] as a solution of potassium meta-arsenite, KAsO2. [9]

Arsenic in its trioxide, As2O3, (brand name Trisenox, ATO) is used as a chemotherapy drug against acute promyelocytic leukaemia (APL), a type of myeloid leukemia. [10] The detailed mechanism of action is unknown, but it is suspected to speed up apoptosis of cancer cells. Arsenic trioxide triggers morphological changes and DNA fragmentations in NB4 in vitro model for APL. It also degrades retinoic acid receptor alpha (RARA). [11] RARA gene is important regulator of premyelocytic immune cell development, differentiation, and apoptosis. [12]

Bacteria using and generating arsenite

Some species of bacteria obtain their energy by oxidizing various fuels while reducing arsenates to form arsenites. The enzymes involved are known as arsenate reductases.

In 2008, bacteria were discovered that employ a version of photosynthesis with arsenites as electron donors, producing arsenates (just like ordinary photosynthesis uses water as electron donor, producing molecular oxygen). The researchers conjectured that historically these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive. [13]

In humans, arsenite inhibits pyruvate dehydrogenase (PDH complex) in the pyruvate-acetyl CoA reaction, by binding to the –SH group of lipoamide, a participant coenzyme. It also inhibits the oxoglutarate dehydrogenase complex by the same mechanism. The inhibition of these enzymes disrupts energy production.

Related Research Articles

<span class="mw-page-title-main">Arsenic</span> Chemical element, symbol As and atomic number 33

Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but only the grey form, which has a metallic appearance, is important to industry.

<span class="mw-page-title-main">Phosphite anion</span> Ion

A phosphite anion or phosphite in inorganic chemistry usually refers to [HPO3]2− but includes [H2PO3] ([HPO2(OH)]). These anions are the conjugate bases of phosphorous acid (H3PO3). The corresponding salts, e.g. sodium phosphite (Na2HPO3) are reducing in character.

In chemistry, perxenates are salts of the yellow xenon-containing anion XeO4−
6
. This anion has octahedral molecular geometry, as determined by Raman spectroscopy, having O–Xe–O bond angles varying between 87° and 93°. The Xe–O bond length was determined by X-ray crystallography to be 1.875 Å.

<span class="mw-page-title-main">Arsenic trioxide</span> Chemical compound (industrial chemical and medication)

Arsenic trioxide, sold under the brand name Trisenox among others, is an inorganic compound with the formula As
2
O
3
. As an industrial chemical, its major uses include the manufacture of wood preservatives, pesticides, and glass. It is also used as a medication to treat a type of cancer known as acute promyelocytic leukemia. For this use it is given by injection into a vein.

<span class="mw-page-title-main">Antimony trioxide</span> Chemical compound

Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis. A mixed arsenic-antimony oxide occurs in nature as the very rare mineral stibioclaudetite.

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

<span class="mw-page-title-main">Telluric acid</span> Chemical compound (Te(OH)6)

Telluric acid, or more accurately Orthotelluric acid, is a chemical compound with the formula Te(OH)6, often written as H6TeO6. It is a white crystalline solid made up of octahedral Te(OH)6 molecules which persist in aqueous solution. In the solid state, there are two forms, rhombohedral and monoclinic, and both contain octahedral Te(OH)6 molecules, containing one hexavalent tellurium (Te) atom in the +6 oxidation state, attached to six hydroxyl (–OH) groups, thus, it can be called tellurium(VI) hydroxide. Telluric acid is a weak acid which is dibasic, forming tellurate salts with strong bases and hydrogen tellurate salts with weaker bases or upon hydrolysis of tellurates in water. It is used as tellurium-source in the synthesis of oxidation catalysts.

The arsenate is an ion with the chemical formula AsO3−4. Bonding in arsenate consists of a central arsenic atom, with oxidation state +5, double bonded to one oxygen atom and single bonded to a further three oxygen atoms. The four oxygen atoms orient around the arsenic atom in a tetrahedral geometry. Resonance disperses the ion's −3 charge across all four oxygen atoms.

<span class="mw-page-title-main">Arsenic acid</span> Chemical compound

Arsenic acid or arsoric acid is the chemical compound with the formula H3AsO4. More descriptively written as AsO(OH)3, this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic acid as such has not been isolated, but is only found in solution, where it is largely ionized. Its hemihydrate form (2H3AsO4·H2O) does form stable crystals. Crystalline samples dehydrate with condensation at 100 °C.

<span class="mw-page-title-main">Arsenous acid</span> Chemical compound

Arsenous acid (or arsenious acid) is the inorganic compound with the formula H3AsO3. It is known to occur in aqueous solutions, but it has not been isolated as a pure material, although this fact does not detract from the significance of As(OH)3.

<span class="mw-page-title-main">Arsenic pentoxide</span> Chemical compound

Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.

<span class="mw-page-title-main">Sodium arsenite</span> Chemical compound

Sodium arsenite usually refers to the inorganic compound with the formula NaAsO2. Also called sodium meta-arsenite, it is the sodium salt of arsenous acid. Sodium ortho-arsenite is Na3AsO3. The compounds are colourless solids.

<span class="mw-page-title-main">Sodium metasilicate</span> Chemical compound

Sodium metasilicate is the chemical substance with formula Na
2
SiO
3
, which is the main component of commercial sodium silicate solutions. It is an ionic compound consisting of sodium cations Na+
and the polymeric metasilicate anions [–SiO2−
3
–]n. It is a colorless crystalline hygroscopic and deliquescent solid, soluble in water but not in alcohols.

Selenium trioxide is the inorganic compound with the formula SeO3. It is white, hygroscopic solid. It is also an oxidizing agent and a Lewis acid. It is of academic interest as a precursor to Se(VI) compounds.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds commonly exist in the oxidation states −2, +2, +4, and +6.

Potassium arsenite (KAsO2) is an inorganic compound that exists in two forms, potassium meta-arsenite (KAsO2) and potassium ortho-arsenite (K3AsO3). It is composed of arsenite ions (AsO33− or AsO2) with arsenic always existing in the +3 oxidation state. Like many other arsenic containing compounds, potassium arsenite is highly toxic and carcinogenic to humans. Potassium arsenite forms the basis of Fowler’s solution, which was historically used as a medicinal tonic, but due to its toxic nature its use was discontinued. Potassium arsenite is still, however, used as a rodenticide.

Thiophosphates (or phosphorothioates, PS) are chemical compounds and anions with the general chemical formula PS
4−x
O3−
x
(x = 0, 1, 2, or 3) and related derivatives where organic groups are attached to one or more O or S. Thiophosphates feature tetrahedral phosphorus(V) centers.

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.

Arsenate-reducing bacteria are bacteria which reduce arsenates. Arsenate-reducing bacteria are ubiquitous in arsenic-contaminated groundwater (aqueous environment). Arsenates are salts or esters of arsenic acid (H3AsO4), consisting of the ion AsO43−. They are moderate oxidizers that can be reduced to arsenites and to arsine. Arsenate can serve as a respiratory electron acceptor for oxidation of organic substrates and H2S or H2. Arsenates occur naturally in minerals such as adamite, alarsite, legrandite, and erythrite, and as hydrated or anhydrous arsenates. Arsenates are similar to phosphates since arsenic (As) and phosphorus (P) occur in group 15 (or VA) of the periodic table. Unlike phosphates, arsenates are not readily lost from minerals due to weathering. They are the predominant form of inorganic arsenic in aqueous aerobic environments. On the other hand, arsenite is more common in anaerobic environments, more mobile, and more toxic than arsenate. Arsenite is 25–60 times more toxic and more mobile than arsenate under most environmental conditions. Arsenate can lead to poisoning, since it can replace inorganic phosphate in the glyceraldehyde-3-phosphate --> 1,3-biphosphoglycerate step of glycolysis, producing 1-arseno-3-phosphoglycerate instead. Although glycolysis continues, 1 ATP molecule is lost. Thus, arsenate is toxic due to its ability to uncouple glycolysis. Arsenate can also inhibit pyruvate conversion into acetyl-CoA, thereby blocking the TCA cycle, resulting in additional loss of ATP.

<span class="mw-page-title-main">Arsenic compounds</span> Chemical compounds containing arsenic

Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table. The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3−
4
ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal owing to the influence of the lone pair of electrons.

References

  1. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. 1 2 3 4 5 6 7 8 Carmalt, C.J & Norman, N.C. (1998). "Chapter 1: Arsenic, antimony and bismuth". In Norman, N.C. (ed.). Chemistry of Arsenic, Antimony and Bismuth. Blackie Academic and Professional. pp. 118–121. ISBN   07514-0389-X.
  3. 1 2 Hamida, M. Ben; Wickleder, M. S. (2006). "Die neuen Catena-Polyarsenite [As3O7]5− und [As4O9]6−". Zeitschrift für anorganische und allgemeine Chemie. 632 (12–13): 2109. doi:10.1002/zaac.200670065. ISSN   0044-2313.
  4. Sheldrick, W. S.; Häusler, H.-J. (1987). "Zur Kenntnis von Natriumarseniten im Dreistoffsystem Na2O–As2O3–H2O bei 6 °C". Zeitschrift für anorganische und allgemeine Chemie. 549 (6): 177–186. doi:10.1002/zaac.19875490618. ISSN   0044-2313.
  5. Hawthorne, Frank C. "Schneiderhoehnite, Fe2+
    Fe3+
    3
    As3+
    5
    O
    13
    , a densely packed arsenite structure." The Canadian Mineralogist23.4 (1985): 675–679.
  6. Morin, G.; Rousse, G.; Elkaim, E. (2007). "Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4•4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage". American Mineralogist. 92 (1): 193–197. Bibcode:2007AmMin..92..193M. doi:10.2138/am.2007.2361. ISSN   0003-004X. S2CID   98312889.
  7. EPA, United states Environmental Protection Agency, Report 815R00012, "Technologies and Costs for the Removal of Arsenic From Drinking Water", December 2000 http://water.epa.gov/drink/info/arsenic/upload/2005_11_10_arsenic_treatments_and_costs.pdf
  8. Managing Arsenic in the Environment: From Soil to Human Health, R. Naidu, Csiro Publishing, 2006, ISBN   978-0643068681
  9. Jolliffe, D. M. (1993). "A history of the use of arsenicals in man". Journal of the Royal Society of Medicine. 86 (5): 287–289. PMC   1294007 . PMID   8505753.
  10. "Arsenic trioxide (Trisenox, ATO)". www.cancerresearchuk.org. Retrieved 2023-08-16.
  11. EMA (2018-09-17). "Trisenox". European Medicines Agency. Retrieved 2023-08-16.
  12. "RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-08-16.
  13. "Arsenic-loving bacteria rewrite photosynthesis rules", Chemistry World, 15 August 2008