This article needs additional citations for verification .(September 2014) |
Augmented assignment (or compound assignment) is the name given to certain assignment operators in certain programming languages (especially those derived from C). An augmented assignment is generally used to replace a statement where an operator takes a variable as one of its arguments and then assigns the result back to the same variable. A simple example is x += 1
which is expanded to x = x + 1
. Similar constructions are often available for various binary operators.
In general, in languages offering this feature, most operators that can take a variable as one of their arguments and return a result of the same type have an augmented assignment equivalent that assigns the result back to the variable in place, including arithmetic operators, bitshift operators, and bitwise operators.
For example, the following statement or some variation of it can be found in many programs:
x = x + 1
This means "find the number stored in the variable x, add 1 to it, and store the result of the addition in the variable x." As simple as this seems, it may have an inefficiency, in that the location of variable x has to be looked up twice if the compiler does not recognize that two parts of the expression are identical: x might be a reference to some array element or other complexity. In comparison, here is the augmented assignment version:
x += 1
With this version, there is no excuse for a compiler failing to generate code that looks up the location of variable x just once, and modifies it in place, if of course the machine code supports such a sequence. For instance, if x is a simple variable, the machine code sequence might be something like
Load x Add 1 Store x
and the same code would be generated for both forms. But if there is a special op code, it might be
MDM x,1
meaning "Modify Memory" by adding 1 to x, and an optimizing compiler would generate the same code for both forms. Some machine codes offer INC and DEC operations (to add or subtract one), others might allow constants other than one.
More generally, the form is
x ?= expression
where the ? stands for some operator (not always +), and there may be no special op codes to help. There is still the possibility that if x is a complicated entity the compiler will be encouraged to avoid duplication in accessing x, and of course, if x is a lengthy name, there will be less typing required. This last was the basis of the similar feature in the ALGOL compilers offered via the Burroughs B6700 systems, using the tilde symbol to stand for the variable being assigned to, so that
LongName:=x + sqrt(LongName)*7;
would become
LongName:=x + sqrt(~)*7;
and so forth. This is more general than just x:=~ + 1;
Producing optimum code would remain the province of the compiler.
In expression-oriented programming languages such as C, assignment and augmented assignment are expressions, which have a value. This allows their use in complex expressions. However, this can produce sequences of symbols that are difficult to read or understand, and worse, a mistype can easily produce a different sequence of gibberish that although accepted by the compiler does not produce desired results. In other languages, such as Python, assignment and augmented assignment are statements, not expressions, and thus cannot be used in complex expressions. For example, the following is valid C, but not valid Python:
a+=b+=c
As with assignment, in these languages augmented assignment is a form of right-associative assignment.
Unlike in C, the compound assignment expressions of C++ evaluate to an lvalue. [1] Being an lvalue allows it to be written on the left-hand-side of some other assignment statement: [2]
intx=11;(x*=2)+=3;// Sets x to 25
In languages such as C, C++ and Python, an augmented assignment where the assignment location includes function calls, is mandated to only call the functions once. I.e in the statement:
my_array[f1()]+=1
The function f1
is mandated to only be called once.
If a language implements augmented assignment by macro expansion to:
my_array[f1()]=my_array[f1()]+1
Then f1
is called twice.
In C, C++, and C#, the assignment operator is =
, which is augmented as follows:
Operator | Description |
---|---|
+= | Addition |
-= | Subtraction |
*= | Multiplication |
/= | Division |
%= | Modulus |
<<= | Left bit shift |
>>= | Right bit shift |
&= | Bitwise AND |
^= | Bitwise exclusive OR |
|= | [[Bitwise operations in C#Bitwise OR ||Bitwise inclusive OR]] |
Each of these is called a compound assignment operator in said languages. [1] [3] [4] [5]
The following list, though not complete or all-inclusive, lists some of the major programming languages that support augmented assignment operators.
|
C is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, and protocol stacks, but its use in application software has been decreasing. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.
In computer science, syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language "sweeter" for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer. Syntactic sugar is usually a shorthand for a common operation that could also be expressed in an alternate, more verbose, form: The programmer has a choice of whether to use the shorter form or the longer form, but will usually use the shorter form since it is shorter and easier to type and read.
Lexical tokenization is conversion of a text into meaningful lexical tokens belonging to categories defined by a "lexer" program. In case of a natural language, those categories include nouns, verbs, adjectives, punctuations etc. In case of a programming language, the categories include identifiers, operators, grouping symbols and data types. Lexical tokenization is not the same process as the probabilistic tokenization, used for a large language model's data preprocessing, that encodes text into numerical tokens, using byte pair encoding.
A string literal or anonymous string is a literal for a string value in the source code of a computer program. Modern programming languages commonly use a quoted sequence of characters, formally "bracketed delimiters", as in x = "foo"
, where "foo"
is a string literal with value foo
. Methods such as escape sequences can be used to avoid the problem of delimiter collision and allow the delimiters to be embedded in a string. There are many alternate notations for specifying string literals especially in complicated cases. The exact notation depends on the programming language in question. Nevertheless, there are general guidelines that most modern programming languages follow.
In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement is a fundamental construct.
The syntax of the C programming language is the set of rules governing writing of software in C. It is designed to allow for programs that are extremely terse, have a close relationship with the resulting object code, and yet provide relatively high-level data abstraction. C was the first widely successful high-level language for portable operating-system development.
In computer science, conditionals are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined Boolean condition evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition . Although dynamic dispatch is not usually classified as a conditional construct, it is another way to select between alternatives at runtime. Conditional statements are the checkpoints in the programe that determines behaviour according to situation.
In computer science a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for loop functions by running a section of code repeatedly until a certain condition has been satisfied.
bc, for basic calculator, is "an arbitrary-precision calculator language" with syntax similar to the C programming language. bc is typically used as either a mathematical scripting language or as an interactive mathematical shell.
In computer programming, the ternary conditional operator is a ternary operator that is part of the syntax for basic conditional expressions in several programming languages. It is commonly referred to as the conditional operator, ternary if, or inline if. An expression a ? b : c
evaluates to b
if the value of a
is true, and otherwise to c
. One can read it aloud as "if a then b otherwise c". The form a ? b : c
is by far and large the most common, but alternative syntaxes do exist; for example, Raku uses the syntax a ?? b !! c
to avoid confusion with the infix operators ?
and !
, whereas in Visual Basic .NET, it instead takes the form If(a, b, c)
.
In computer programming, a statement is a syntactic unit of an imperative programming language that expresses some action to be carried out. A program written in such a language is formed by a sequence of one or more statements. A statement may have internal components.
In computer science, a relational operator is a programming language construct or operator that tests or defines some kind of relation between two entities. These include numerical equality and inequalities.
xHarbour is a free multi-platform extended Clipper compiler, offering multiple graphic terminals (GTs), including console drivers, GUIs, and hybrid console/GUIs. xHarbour is backward-compatible with Clipper and supports many language syntax extensions, greatly extended run-time libraries, and extensive third party support.
Harbour is a computer programming language, primarily used to create database/business programs. It is a modernized, open source and cross-platform version of the older Clipper system, which in turn developed from the dBase database market of the 1980s and 1990s.
The computer programming languages C and Pascal have similar times of origin, influences, and purposes. Both were used to design their own compilers early in their lifetimes. The original Pascal definition appeared in 1969 and a first compiler in 1970. The first version of C appeared in 1972.
In computer programming, a one-pass compiler is a compiler that passes through the parts of each compilation unit only once, immediately translating each part into its final machine code. This is in contrast to a multi-pass compiler which converts the program into one or more intermediate representations in steps between source code and machine code, and which reprocesses the entire compilation unit in each sequential pass.
In computer science, the syntax of a computer language is the rules that define the combinations of symbols that are considered to be correctly structured statements or expressions in that language. This applies both to programming languages, where the document represents source code, and to markup languages, where the document represents data.
The syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted. The Python language has many similarities to Perl, C, and Java. However, there are some definite differences between the languages. It supports multiple programming paradigms, including structured, object-oriented programming, and functional programming, and boasts a dynamic type system and automatic memory management.
In computer programming, an anonymous function is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. If the function is only used once, or a limited number of times, an anonymous function may be syntactically lighter than using a named function. Anonymous functions are ubiquitous in functional programming languages and other languages with first-class functions, where they fulfil the same role for the function type as literals do for other data types.
Increment and decrement operators are unary operators that increase or decrease their operand by one.