Automatic exposure control

Last updated
An x-ray image receptor, containing an anti-scatter grid and three AEC regions (represented by dark grey circles and square) These regions represent anatomical areas, e.g. lungs, spine. They can be selected individually, or all at once depending on the need. ChestAEC.jpg
An x-ray image receptor, containing an anti-scatter grid and three AEC regions (represented by dark grey circles and square) These regions represent anatomical areas, e.g. lungs, spine. They can be selected individually, or all at once depending on the need.

Automatic Exposure Control (AEC) is an X-ray exposure termination device. A medical radiographic exposure is always initiated by a human operator but an AEC detector system may be used to terminate the exposure when a predetermined amount of radiation has been received. [1] The intention of AEC is to provide consistent x-ray image exposure, whether to film, a digital detector or a CT scanner. AEC systems may also automatically set exposure factors such as the X-ray tube current and voltage in a CT. [2]

Contents

Operation

Projectional Radiography

In projectional radiography an AEC system uses one or more physically thin radiation ionization chambers (the "AEC detector") which is positioned between the X-ray source and the x-ray receptor. Where low energy x-rays are used such as in mammography the AEC detector is placed behind the image receptor to avoid creating a shadow. [3] :106

In early radiographic AEC systems, a large paddle (17" x 17") of transparent lucite was sandwiched between rare earth screens, [4] which emitted photons when excited by X-rays. The individual lucite sections were open on one end, and a solenoid was used to select one of three, or a combination of shutters that allowed the generated light into a Photomultiplier tube. The output of the PMT was then converted to a signal, which ramped in the positive direction until a preprogrammed threshold was reached. At this point, the X-ray generator terminated the exposure. This method is no longer used, and has been replaced by the iontomat. In an iontomat, a weak ionization signal resulting from the radiographic X-rays passing through it are integrated as a ramp shaped voltage waveform. This ramp signal rises until it matches a pre-set threshold. At this point the x-ray exposure is terminated by the X-ray generator. [5] AEC devices are calibrated to ensure that similar exams have linearity in optical density. [6]

Computed Tomography

Modern computed tomography (CT) scanners have AEC systems which aim to maintain image quality for patients of varying sizes, whilst keeping doses as low as reasonably practicable. The systems are also designed to maintain quality with the varying size and attenuation of an individual patient over their length. Implementations vary between manufacturers, some systems are based on a desired noise level in the image, while others are based on a specified reference output (milliampere second, mAs). [7] [8]

CT AEC systems use the initial "scanogram", a fixed angle planning view, to determine the relative size of the patient, and variation over their length. The tube output is then adjusted for overall size. The output is also typically modulated for each rotation in response to changes in attenuation over patient length. Some systems adjust output during each rotation, which is known as rotational modulation, based on measured attenuation in the previous rotation. [9]

Advantages

Because patients vary in size and shape, an AEC device is very useful in achieving consistent x-ray film densities, which can be difficult when manually setting exposure factors without AEC. [3] :130

Disadvantages

AEC devices are susceptible to operator error (usually due to mispositioned anatomy or having the incorrect AEC chamber selected). [10] Prosthetic devices such as total hip hardware can also cause the selected ionization chamber to overexpose the image receptor. This is due to the absorption of the X-ray beam into the metal of the hardware as opposed to exposing the ionization chamber. [11]

Related Research Articles

<span class="mw-page-title-main">X-ray</span> Form of short-wavelength electromagnetic radiation

X-ray radiation, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 124 keV to 145 eV, respectively. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it on November 8, 1895. He named it X-radiation to signify an unknown type of radiation. Spellings of X-ray(s) in English include the variants x-ray(s), xray(s), and X ray(s).

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Radiography</span> Imaging technique using ionizing and non-ionizing radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography and industrial radiography. Similar techniques are used in airport security. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and is projected toward the object. A certain amount of the X-rays or other radiation is absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two dimensional images by this technique is called projectional radiography. In computed tomography an X-ray source and its associated detectors rotate around the subject which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding attenuation of these beams is collated and subjected to computation to generate two dimensional images in three planes which can be further processed to produce a three dimensional image.

<span class="mw-page-title-main">Radiology</span> Branch of Medicine

Radiology is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography, but today it includes all imaging modalities, including those that use no electromagnetic radiation, as well as others that do, such as computed tomography (CT), fluoroscopy, and nuclear medicine including positron emission tomography (PET). Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">X-ray generator</span> Machine that generates X-rays

An X-ray generator is a device that produces X-rays. Together with an X-ray detector, it is commonly used in a variety of applications including medicine, X-ray fluorescence, electronic assembly inspection, and measurement of material thickness in manufacturing operations. In medical applications, X-ray generators are used by radiographers to acquire x-ray images of the internal structures of living organisms, and also in sterilization.

<span class="mw-page-title-main">Fluoroscopy</span> Production of an image when X-rays strike a fluorescent screen

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a surgeon to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.

An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems to allow low-intensity X-rays to be converted to a conveniently bright visible light output. The device contains a low absorbency/scatter input window, typically aluminum, input fluorescent screen, photocathode, electron optics, output fluorescent screen and output window. These parts are all mounted in a high vacuum environment within glass or, more recently, metal/ceramic. By its intensifying effect, It allows the viewer to more easily see the structure of the object being imaged than fluorescent screens alone, whose images are dim. The XRII requires lower absorbed doses due to more efficient conversion of X-ray quanta to visible light. This device was originally introduced in 1948.

Digital radiography is a form of radiography that uses x-ray–sensitive plates to directly capture data during the patient examination, immediately transferring it to a computer system without the use of an intermediate cassette. Advantages include time efficiency through bypassing chemical processing and the ability to digitally transfer and enhance images. Also, less radiation can be used to produce an image of similar contrast to conventional radiography.

<span class="mw-page-title-main">Projectional radiography</span> Formation of 2D images using X-rays

Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called 'X-ray'. Plain radiography or roentgenography generally refers to projectional radiography. Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.

Image-guided radiation therapy is the process of frequent imaging, during a course of radiation treatment, used to direct the treatment, position the patient, and compare to the pre-therapy imaging from the treatment plan. Immediately prior to, or during, a treatment fraction, the patient is localized in the treatment room in the same position as planned from the reference imaging dataset. An example of IGRT would include comparison of a cone beam computed tomography (CBCT) dataset, acquired on the treatment machine, with the computed tomography (CT) dataset from planning. IGRT would also include matching planar kilovoltage (kV) radiographs or megavoltage (MV) images with digital reconstructed radiographs (DRRs) from the planning CT.

The computed tomography dose index (CTDI) is a commonly used radiation exposure index in X-ray computed tomography (CT), first defined in 1981. The unit of CTDI is the gray (Gy) and it can be used in conjunction with patient size to estimate the absorbed dose. The CTDI and absorbed dose may differ by more than a factor of two for small patients such as children.

<span class="mw-page-title-main">Cone beam computed tomography</span> Medical imaging technique

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

<span class="mw-page-title-main">Coronary CT angiography</span> Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

<span class="mw-page-title-main">Neutron imaging</span>

Neutron imaging is the process of making an image with neutrons. The resulting image is based on the neutron attenuation properties of the imaged object. The resulting images have much in common with industrial X-ray images, but since the image is based on neutron attenuating properties instead of X-ray attenuation properties, some things easily visible with neutron imaging may be very challenging or impossible to see with X-ray imaging techniques.

<span class="mw-page-title-main">Rotational angiography</span> Medical imaging technique based on x-ray,

Rotational angiography is a medical imaging technique based on x-ray, that allows to acquire CT-like 3D volumes during hybrid surgery or during a catheter intervention using a fixed C-Arm. The fixed C-Arm thereby rotates around the patient and acquires a series of x-ray images that are then reconstructed through software algorithms into a 3D image. Synonyms for rotational angiography include flat-panel volume CT and cone-beam CT.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

<span class="mw-page-title-main">Focal plane tomography</span> Imaging technique using moving X-ray machines

In radiography, focal plane tomography is tomography by simultaneously moving the X-ray generator and X-ray detector so as to keep a consistent exposure of only the plane of interest during image acquisition. This was the main method of obtaining tomographs in medical imaging until the late-1970s. It has since been largely replaced by more advanced imaging techniques such as CT and MRI. It remains in use today in a few specialized applications, such as for acquiring orthopantomographs of the jaw in dental radiography.

<span class="mw-page-title-main">Operation of computed tomography</span>

X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.

<span class="mw-page-title-main">History of computed tomography</span> History of CT scanning technology

The history of X-ray computed tomography dates back to at least 1917 with the mathematical theory of the Radon transform In October 1963, William H. Oldendorf received a U.S. patent for a "radiant energy apparatus for investigating selected areas of interior objects obscured by dense material". The first clinical CT scan was performed in 1971 using a scanner invented by Sir Godfrey Hounsfield.

References

  1. Sterling, S (1988). "Automatic exposure control: a primer". Radiologic Technology. 59 (5): 421–7. PMID   3290991.
  2. "Automatic exposure control devices". IAEA Human Health Campus. Retrieved 16 December 2016.
  3. 1 2 Dance, D R; Christofides, S; Maidment, A D A; McLean, I D; Ng, K H (2014). Diagnostic radiology physics : a handbook for teachers and students. Vienna: International Atomic Energy Agency. ISBN   978-92-0-131010-1.
  4. url=https://radiopaedia.org/articles/intensifying-screen?lang=us
  5. Webb, S (2009). The physics of medical imaging (2nd ed.). London: Taylor & Francis. p. 79. ISBN   9780750305730.
  6. Doyle, P; Martin, C J (7 November 2006). "Calibrating automatic exposure control devices for digital radiography". Physics in Medicine and Biology. 51 (21): 5475–5485. Bibcode:2006PMB....51.5475D. doi:10.1088/0031-9155/51/21/006. PMID   17047264. S2CID   22397709.
  7. Söderberg, Marcus; Gunnarsson, Mikael (July 2010). "Automatic exposure control in computed tomography – an evaluation of systems from different manufacturers". Acta Radiologica. 51 (6): 625–634. doi:10.3109/02841851003698206. PMID   20429764. S2CID   9943659.
  8. Tack, Denis; Kalra, Mannudeep K.; Gevenois, Pierre Alain (2012). Radiation Dose from Multidetector CT. Springer. p. 261. ISBN   9783642245350.
  9. Keat, Nicholas; ImPACT (2005). "CT scanner automatic exposure control systems". MHRA. Department of Health. Archived from the original (pdf) on 5 December 2017. Retrieved 4 December 2017.
  10. Walsh, C; Larkin, A; Dennan, S; O'Reilly, G (November 2004). "Exposure variations under error conditions in automatic exposure controlled film–screen projection radiography". The British Journal of Radiology. 77 (923): 931–933. doi:10.1259/bjr/62185486. PMID   15507417.
  11. Carroll, Quinn B. (2014). Radiography in the digital age: physics, exposure, radiation biology (2nd ed.). Springfield, IL: Charles C Thomas. p. 415. ISBN   9780398080976.

Further reading