BMW 802

Last updated
BMW 802
Type Radial engine
Manufacturer BMW
First run1943

The BMW 802 was a large air-cooled radial aircraft engine, built using two rows of nine cylinders to produce what was essentially an 18-cylinder version of the 14-cylinder BMW 801. Although promising at first, development dragged on and the project was eventually cancelled to concentrate on jet engines instead.

Contents

Design and development

Soon after the 801 entered testing, BMW engineers turned to building much larger versions.

BMW 803

One idea was to bolt two 801s back to back. Although seemingly a simple concept, the resulting, 83.5 litre displacement BMW 803 was in fact fantastically complicated. The power of the engine could only practically be used in extremely large propellers, or, as selected, a contra-rotating pair of propellers. This required a large gearbox on the front of the engine, which combined with the layout of the cylinders, left no room for airflow over the cylinders. This demanded the addition of liquid cooling.

BMW 802

Another idea was to add more cylinders to the 801 design, and since radials need to have an odd number of cylinders per row, the next size up was a two-row 9-cylinder design. The 802 emerged with an almost identical displacement to the American 18-cylinder Wright R-3350 Duplex-Cyclone and just 54 cm3 (3.3 cu in) larger than the British Bristol Centaurus.

One problem with the 801 was its poor altitude performance, due almost entirely to its single-stage two-speed, mechanically driven supercharger. Since the 802 was not a necessity given the success and emerging flexibility of the 801's basic design, the engineers decided to take the time needed to address this problem by including an improved two-stage, [1] three-speed supercharger. The lowest-speed setting would not "rob" as much power at low altitudes, allowing the engine to produce 2,600 PS (1,912 kW) for takeoff, and still produce 1,600 PS (1,176 kW) at 12,000 m (39,000 ft). This was a dramatic improvement on the 801A's 1,600 PS (1,176 kW) for takeoff and 1,380 PS (1,015 kW) maximum at 4,500 m (14,800 ft), especially notable considering the engine was less than 30% larger in displacement.

In addition, airflow through the engine had been carefully managed by the BMW aviation powerplant engineering team to enable the straightest possible path into and out of the engine. [2] A twelve-blade fan, almost identical in appearance to the 801's, and stator compressed incoming air, then fed some into the supercharger. The rest was channeled into three paths, the intercooler and the front and rear cylinder baffles. All three streams rejoined behind the rearmost row of cylinders into the exhaust. [3] The combination of the fan and ejector thrust from the exhaust balanced the total internal engine drag. [3]

Looking at competing German engines in the 2,000 hp 'class', the engine weighed 1,530 kg (3,370 lb), [1] the same weight as the complex DB 606, which consisted of twinned water-cooled V12 Daimler-Benz DB 601s coupled together, which generated some 2,700 PS (1,986 kW) at sea level for takeoff. The American Wright Duplex-Cyclone radial engine, however, only weighed 1,212 kg (2,670 lb) for nearly the same displacement and engine configuration as the 802. The 802 was eventually projected to be capable of producing 3,000 hp (2,200 kW; 3,000 PS), [1] a power level that the Duplex-Cyclone would not equal and surpass until the post-war years, up to some 2,610 kW (3,500 hp) through the addition of a trio of power-recovery turbines in later models.

P.8011

A further improvement led to P.8011, which replaced the supercharger with two smaller turbochargers, driving contra-rotating propellers. This raised the takeoff power to about 2,800 PS (2,059 kW), (some report 2,900 PS (2,133 kW)) and dramatically improved altitude performance. As with most German turbocharger projects, the lack of quality high-temperature alloys meant the project was never able to enter production.

Cancellation

Development was still underway in late 1943 when BMW decided the project wasn't worthwhile. With their BMW 003 axial-flow turbojet engine finally maturing and considerably larger models of turbojet and even turboprop powerplants entering the prototype phase from both BMW and their competitors, it appeared that large piston engines weren't worth building. Postwar, the British scientific mission's leader, Sir Roy Fedden, called it "interesting and innovative" [4] and considered it "one of the most interesting piston engines seen in Germany". [3]

Specifications (BMW 802)

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">BMW 801</span> German aircraft engine developed by BMW during World War II

The BMW 801 was a powerful German 41.8-litre (2,550 cu in) air-cooled 14-cylinder-radial aircraft engine built by BMW and used in a number of German Luftwaffe aircraft of World War II. Production versions of the twin-row engine generated between 1,560 and 2,000 PS. It was the most produced radial engine of Germany in World War II with more than 61,000 built.

<span class="mw-page-title-main">Wright R-3350 Duplex-Cyclone</span> 1937 18-cylinder radial piston engine family by Wright

The Wright R-3350 Duplex-Cyclone is an American twin-row, supercharged, air-cooled, radial aircraft engine with 18 cylinders displacing nearly 3,350 cubic inches (54.9 L). Power ranged from 2,200 to over 3,700 hp, depending on the model. Developed before World War II, the R-3350's design required a long time to mature before finally being used to power the Boeing B-29 Superfortress.

<span class="mw-page-title-main">Pratt & Whitney R-4360 Wasp Major</span> R-28 piston aircraft engine family

The Pratt & Whitney R-4360 Wasp Major is an American 28-cylinder four-row radial piston aircraft engine designed and built during World War II. First run in 1944, at 4,362.5 cu in (71.5 L), it is the largest-displacement aviation piston engine to be mass-produced in the United States, and at 4,300 hp (3,200 kW) the most powerful. It was the last of the Pratt & Whitney Wasp family, and the culmination of its maker's piston engine technology.

<span class="mw-page-title-main">Junkers Jumo 222</span>

The Jumo 222 was a German high-power multiple-bank in-line piston aircraft engine from Junkers, designed under the management of Ferdinand Brandner of the Junkers Motorenwerke.

<span class="mw-page-title-main">Wright R-2600 Twin Cyclone</span> American WWII-era aircraft engine

The Wright R-2600 Cyclone 14 is an American radial engine developed by Curtiss-Wright and widely used in aircraft in the 1930s and 1940s.

<span class="mw-page-title-main">Bramo 323</span>

The Bramo 323 Fafnir is a nine-cylinder radial aircraft engine of the World War II era. Based heavily on Siemens/Bramo's earlier experience producing the Bristol Jupiter under licence, the Bramo 323 saw limited use.

<span class="mw-page-title-main">BMW 803</span>

The BMW 803 was a German aircraft engine, an attempt by BMW to build a high-output aircraft engine by coupling two BMW 801 engines back-to-back, driving contra-rotating propellers. The result was a 28-cylinder, four-row radial engine, each comprising a multiple-bank in-line engine with two cylinders in each bank, which, due to cooling concerns, were liquid cooled.

<span class="mw-page-title-main">Junkers Jumo 210</span> V-12 piston aircraft engine family by Junkers

The Jumo 210 was Junkers Motoren's first production inverted V12 gasoline aircraft engine, first produced in the early 1930s. Depending on the version it produced between 610 and 730 PS and can be considered a counterpart of the Rolls-Royce Kestrel in many ways. Although originally intended to be used in almost all pre-war designs, rapid progress in aircraft design quickly relegated it to the small end of the power scale by the late 1930s. Almost all aircraft designs switched to the much larger Daimler-Benz DB 600, so the 210 was produced only for a short time before Junkers responded with a larger engine of their own, the Junkers Jumo 211.

<span class="mw-page-title-main">BMW 132</span>

The BMW 132 was a nine-cylinder radial aircraft engine produced by BMW starting in 1933.

<span class="mw-page-title-main">Lycoming XR-7755</span> 1940s American piston aircraft engine

The Lycoming XR-7755 was the largest piston aircraft engine ever built in the United States, with 36 cylinders totaling about 7,750 in³ (127 L) of displacement and a power output of 5,000 horsepower (3,700 kilowatts). It was originally intended to be used in the "European bomber" that eventually emerged as the Convair B-36. Only two examples were built before the project was terminated in 1946.

The Tumansky M-87 was a Soviet air-cooled aircraft radial engine that was developed in the late 1930s. It was a development of their licensed Gnome-Rhone 14K engines that started with the M-85.

<span class="mw-page-title-main">Shvetsov ASh-62</span> Soviet radial piston aircraft engine

The Shvetsov ASh-62 is a nine-cylinder, air-cooled, radial aircraft engine produced in the Soviet Union. A version of this engine is produced in Poland as the ASz-62 and the People's Republic of China as the HS-5.

<span class="mw-page-title-main">Fiat A.74</span> 1930s Italian piston aircraft engine

The Fiat A.74 was a two-row, fourteen-cylinder, air-cooled radial engine produced in Italy in the 1930s as a powerplant for aircraft. It was used in some of Italy's most important aircraft of World War II.

<span class="mw-page-title-main">Gnome-Rhône 18L</span>

The Gnome et Rhône 18L was a French-designed twin-row 18-cylinder air-cooled radial engine. The 18L was a large step up in terms of displacement, power and number of cylinders. The majority of Gnome-Rhone engines were either 7, 9 or 14 cylinders. The engine proved not to be a success, and it was dropped in 1939 due to a poor power-to-weight ratio.

<span class="mw-page-title-main">Wright R-2160 Tornado</span>

The Wright R-2160 Tornado was an experimental 42-cylinder, 7-cylinder per row, 6-row liquid-cooled inline radial aircraft engine. It was proposed in 1940 with 2,350 hp (1,752 kW) for experimental aircraft such as the Lockheed XP-58 Chain Lightning, Vultee XP-68 Tornado, and the Republic XP-69.

<span class="mw-page-title-main">Shvetsov ASh-21</span> Soviet radial piston aircraft engine

The Shvetsov ASh-21 is a seven-cylinder single-row air-cooled radial aero engine.

The Shvetsov ASh-73 was an 18-cylinder, air-cooled, radial aircraft engine produced between 1947 and 1957 in the Soviet Union. It was primarily used as the powerplant for the Tupolev Tu-4 heavy bomber, an unlicensed, reverse engineered copy of the American Boeing B-29 Superfortress.

<span class="mw-page-title-main">Alvis Pelides</span> 1930s British piston aircraft engine

The Alvis Pelides was an unflown British air-cooled radial aero engine first developed in 1936. The Pelides Major was a projected but unbuilt development as were the Alcides, Alcides Major and the Maeonides Major, the Alvis aircraft engine range taking their names from Greek mythology.

The Wright R-4090 Cyclone 22 was an American experimental radial piston engine designed and built in prototype form by Wright Aeronautical during the 1940s.

The Nakajima Ha5 is a twin row, 14 cylinder air-cooled radial aircraft engine built by the Japanese Nakajima Aircraft Company. The engine was a development of earlier single-row Japanese engines, the Kotobuki and Hikari, which had combined features of the Bristol Jupiter and Pratt & Whitney R-1340 Wasp designs.

References

Notes

  1. 1 2 3 Christopher, p. 81
  2. Christopher, pp. 81–82
  3. 1 2 3 Christopher, p. 82
  4. quoted in Christopher, p. 81

Bibliography