Backlash (engineering)

Last updated

In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence." [1] p. 1-8 An example, in the context of gears and gear trains, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a valve train with mechanical tappets, where a certain range of lash is necessary for the valves to work properly.

Contents

Backlash Backlash.svg
Backlash

Depending on the application, backlash may or may not be desirable. Some amount of backlash is unavoidable in nearly all reversing mechanical couplings, although its effects can be negated or compensated for. In many applications, the theoretical ideal would be zero backlash, but in actual practice some backlash must be allowed to prevent jamming.[ citation needed ] Reasons for specifying a requirement for backlash include allowing for lubrication, manufacturing errors, deflection under load, and thermal expansion.[ citation needed ] A principal cause of undesired backlash is wear.

Gears

Factors affecting the amount of backlash required in a gear train include errors in profile, pitch, tooth thickness, helix angle and center distance, and run-out. The greater the accuracy the smaller the backlash needed. Backlash is most commonly created by cutting the teeth deeper into the gears than the ideal depth. Another way of introducing backlash is by increasing the center distances between the gears. [2]

Backlash due to tooth thickness changes is typically measured along the pitch circle and is defined by:

where:

 = backlash due to tooth thickness modifications
= tooth thickness on the pitch circle for ideal gearing (no backlash)
= actual tooth thickness

Backlash, measured on the pitch circle, due to operating center modifications is defined by: The speed of the machine. The material in the machine

where:

 = backlash due to operating center distance modifications
= difference between actual and ideal operating center distances
= pressure angle

Standard practice is to make allowance for half the backlash in the tooth thickness of each gear.[ citation needed ] However, if the pinion (the smaller of the two gears) is significantly smaller than the gear it is meshing with then it is common practice to account for all of the backlash in the larger gear. This maintains as much strength as possible in the pinion's teeth. [2] The amount of additional material removed when making the gears depends on the pressure angle of the teeth. For a 14.5° pressure angle the extra distance the cutting tool is moved in equals the amount of backlash desired. For a 20° pressure angle the distance equals 0.73 times the amount of backlash desired. [3]

As a rule of thumb the average backlash is defined as 0.04 divided by the diametral pitch; the minimum being 0.03 divided by the diametral pitch and the maximum 0.05 divided by the diametral pitch. [3] In metric, you can just multiply the values with the module:

In a gear train, backlash is cumulative. When a gear-train is reversed the driving gear is turned a short distance, equal to the total of all the backlashes, before the final driven gear begins to rotate. At low power outputs, backlash results in inaccurate calculation from the small errors introduced at each change of direction; at large power outputs backlash sends shocks through the whole system and can damage teeth and other components.[ citation needed ]

Anti-backlash designs

In certain applications, backlash is an undesirable characteristic and should be minimized.

Gear trains where positioning is key but power transmission is light

The best example here is an analog radio tuner dial where one may make precise tuning movements both forwards and backwards. Specialized gear designs allow this. One of the more common designs splits the gear into two gears, each half the thickness of the original.

One half of the gear is fixed to its shaft while the other half of the gear is allowed to turn on the shaft, but pre-loaded in rotation by small coil springs that rotate the free gear relative to the fixed gear. In this way, the spring compression rotates the free gear until all of the backlash in the system has been taken out; the teeth of the fixed gear press against one side of the teeth of the pinion while the teeth of the free gear press against the other side of the teeth on the pinion. Loads smaller than the force of the springs do not compress the springs and with no gaps between the teeth to be taken up, backlash is eliminated.

Leadscrews where positioning and power are both important

Another area where backlash matters is in leadscrews. Again, as with the gear train example, the culprit is lost motion when reversing a mechanism that is supposed to transmit motion accurately. Instead of gear teeth, the context is screw threads. The linear sliding axes (machine slides) of machine tools are an example application.

Most machine slides for many decades, and many even today, have been simple (but accurate) cast-iron linear bearing surfaces, such as a dovetail- or box-slide, with an Acme leadscrew drive. With just a simple nut, some backlash is inevitable. On manual (non-CNC) machine tools, a machinist's means for compensating for backlash is to approach all precise positions using the same direction of travel, that is, if they have been dialing left, and next want to move to a rightward point, they will move rightward past it, then dial leftward back to it; the setups, tool approaches, and toolpaths must in that case be designed within this constraint.[ citation needed ]

The next-more complex method than the simple nut is a split nut, whose halves can be adjusted, and locked with screws, so that the two sides ride, respectively, against leftward thread and the other side rides rightward faces. Notice the analogy here with the radio dial example using split gears, where the split halves are pushed in opposing directions. Unlike in the radio dial example, the spring tension idea is not useful here, because machine tools taking a cut put too much force against the screw. Any spring light enough to allow slide movement at all would allow cutter chatter at best and slide movement at worst. These screw-adjusted split-nut-on-an-Acme-leadscrew designs cannot eliminate all backlash on a machine slide unless they are adjusted so tight that the travel starts to bind. Therefore, this idea can't totally obviate the always-approach-from-the-same-direction concept; nevertheless, backlash can be held to a small amount (1 or 2 thousandths of an inch or), which is more convenient, and in some non-precise work is enough to allow one to "ignore" the backlash, i.e., to design as if there were none. CNCs can be programmed to use the always-approach-from-the-same-direction concept, but that is not the normal way they are used today[ when? ], because hydraulic anti-backlash split nuts, and newer forms of leadscrew than Acme/trapezoidal -- such as recirculating ball screws -- effectively eliminate the backlash.[ citation needed ] The axis can move in either direction without the go-past-and-come-back motion.

The simplest CNCs, such as microlathes or manual-to-CNC conversions, which use nut-and-Acme-screw drives can be programmed to correct for the total backlash on each axis, so that the machine's control system will automatically move the extra distance required to take up the slack when it changes directions. This programmatic "backlash compensation" is a cheap solution, but professional grade CNCs use the more expensive backlash-eliminating drives mentioned above. This allows them to do 3D contouring with a ball-nosed endmill, for example, where the endmill travels around in many directions with constant rigidity and without delays.[ citation needed ]

In mechanical computers a more complex solution is required, namely a frontlash gearbox. [4] This works by turning slightly faster when the direction is reversed to 'use up' the backlash slack.

Some motion controllers include backlash compensation. Compensation may be achieved by simply adding extra compensating motion (as described earlier) or by sensing the load's position in a closed loop control scheme. The dynamic response of backlash itself, essentially a delay, makes the position loop less stable and thus more prone to oscillation.

Minimum backlash

Minimum backlash is calculated as the minimum transverse backlash at the operating pitch circle allowable when the gear teeth with the greatest allowable functional tooth thickness are in mesh with the pinion teeth with their greatest allowable functional tooth thickness, at the smallest allowable center distance, under static conditions.

Backlash variation is defined as the difference between the maximum and minimum backlash occurring in a whole revolution of the larger of a pair of mating gears. [5]

Applications

Backlash in gear couplings allows for slight angular misalignment. There can be significant backlash in unsynchronized transmissions because of the intentional gap between the dogs in dog clutches. The gap is necessary to engage dogs when input shaft (engine) speed and output shaft (driveshaft) speed are imperfectly synchronized. If there was a smaller clearance, it would be nearly impossible to engage the gears because the dogs would interfere with each other in most configurations. In synchronized transmissions, synchromesh solves this problem.

However, backlash is undesirable in precision positioning applications such as machine tool tables. It can be minimized by choosing ball screws or leadscrews with preloaded nuts, and mounting them in preloaded bearings. A preloaded bearing uses a spring and/or a second bearing to provide a compressive axial force that maintains bearing surfaces in contact despite reversal of the load direction.

See also

Related Research Articles

<span class="mw-page-title-main">Gear</span> Rotating circular machine part with teeth that mesh with another toothed part

A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth, which mesh with another (compatible) toothed part to transmit rotational power. While doing so, they can change the torque and rotational speed being transmitted and also change the rotational axis of the power being transmitted. The teeth on the two meshing gears all have the same shape.

<span class="mw-page-title-main">Rack and pinion</span> Type of linear actuator

A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert between rotational motion and linear motion. Rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate. A rack-and-pinion drive can use both straight and helical gears. Though some suggest helical gears are quieter in operation, no hard evidence supports this theory. Helical racks, while being more affordable, have proven to increase side torque on the datums, increasing operating temperature leading to premature wear. Straight racks require a lower driving force and offer increased torque and speed per fraction of gear ratio which allows lower operating temperature and lessens viscal friction and energy use. The maximum force that can be transmitted in a rack-and-pinion mechanism is determined by the torque on the pinion and its size, or, conversely, by the force on the rack and the size of the pinion.

<span class="mw-page-title-main">Ratchet (device)</span> Gear and pawl; prevents motion in one direction

A ratchet is a mechanical device that allows continuous linear or rotary motion in only one direction while preventing motion in the opposite direction. Ratchets are widely used in machinery and tools. The word ratchet is also used informally to refer to a ratcheting socket wrench.

<span class="mw-page-title-main">Deadband</span>

A deadband or dead-band is a band of input values in the domain of a transfer function in a control system or signal processing system where the output is zero. Deadband regions can be used in control systems such as servoamplifiers to prevent oscillation or repeated activation-deactivation cycles. A form of deadband that occurs in mechanical systems, compound machines such as gear trains is backlash.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

<span class="mw-page-title-main">Vise</span> Apparatus for securing a workpiece

A vise or vice is a mechanical apparatus used to secure an object to allow work to be performed on it. Vises have two parallel jaws, one fixed and the other movable, threaded in and out by a screw and lever.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Leadscrew</span> Screw used as a linkage in a mechanism

A leadscrew, also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into linear motion. Because of the large area of sliding contact between their male and female members, screw threads have larger frictional energy losses compared to other linkages. They are not typically used to carry high power, but more for intermittent use in low power actuator and positioner mechanisms. Leadscrews are commonly used in linear actuators, machine slides, vises, presses, and jacks. Leadscrews are a common component in electric linear actuators.

<span class="mw-page-title-main">Trapezoidal thread form</span> Screw thread profiles with trapezoidal outlines

Trapezoidal thread forms are screw thread profiles with trapezoidal outlines. They are the most common forms used for leadscrews. They offer high strength and ease of manufacture. They are typically found where large loads are required, as in a vise or the leadscrew of a lathe. Standardized variations include multiple-start threads, left-hand threads, and self-centering threads.

<span class="mw-page-title-main">Ball screw</span> Low-friction linear actuator

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction. They are made to close tolerances and are therefore suitable for use in situations in which high precision is necessary. The ball assembly acts as the nut while the threaded shaft is the screw.

<span class="mw-page-title-main">Buttress thread</span> Screw thread profile with an asymmetric square/slanted shape

Buttress thread forms, also known as sawtooth thread forms or breech-lock thread forms. are screw thread profiles with an asymmetric shape, having one square face and the other slanted. They are most commonly used for leadscrews where the load is principally applied in one direction. The asymmetric thread form allows the thread to have low friction and withstand greater loads than other forms in one direction, but at the cost of higher friction and inferior load bearing in the opposite direction. They are typically easier to manufacture than square thread forms but offer higher load capacity than equivalently sized trapezoidal thread forms.

<span class="mw-page-title-main">Duplex worm</span>

A duplex worm or dual lead worm is a worm gear set where the two flanks are manufactured with slightly different modules and/or diameter quotients. As a result of this, different lead angles on both tooth profiles are obtained, so that the tooth thickness is continuously increasing all over the worm length, while the gap between two threads is decreasing. This allows control of backlash.

<span class="mw-page-title-main">Profile angle</span>

The profile angle of a gear is the angle at a specified pitch point between a line tangent to a tooth surface and the line normal to the pitch surface. This definition is applicable to every type of gear for which a pitch surface can be defined. The profile angle gives the direction of the tangent to a tooth profile.

<span class="mw-page-title-main">Spiral bevel gear</span>

A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight teeth.

<span class="mw-page-title-main">Screw-cutting lathe</span> Machine for accurately cutting screw threads

A screw-cutting lathe is a machine capable of cutting very accurate screw threads via single-point screw-cutting, which is the process of guiding the linear motion of the tool bit in a precisely known ratio to the rotating motion of the workpiece. This is accomplished by gearing the leadscrew to the spindle with a certain gear ratio for each thread pitch. Every degree of spindle rotation is matched by a certain distance of linear tool travel, depending on the desired thread pitch.

<span class="mw-page-title-main">Roller screw</span> Low-friction precision screw-type actuato

A roller screw, also known as a planetary roller screw or satellite roller screw, is a low-friction precision screw-type actuator, a mechanical device for converting rotational motion to linear motion, or vice versa. Planetary roller screws are used as the actuating mechanism in many electro-mechanical linear actuators. Due to its complexity the roller screw is a relatively expensive actuator, but may be suitable for high-precision, high-speed, heavy-load, long-life and heavy-use applications.

<span class="mw-page-title-main">Automatic lathe</span>

In metalworking and woodworking, an automatic lathe is a lathe with an automatically controlled cutting process. Automatic lathes were first developed in the 1870s and were mechanically controlled. From the advent of NC and CNC in the 1950s, the term automatic lathe has generally been used for only mechanically controlled lathes, although some manufacturers market Swiss-type CNC lathes as 'automatic'.

Carbide saws are machine tools for cutting. The saw teeth are made of cemented carbide, so that hard materials can be cut.

References

  1. Bagad, V.S. (2009). Mechatronics (4th revised ed.). Pune: Technical Publications. ISBN   9788184314908 . Retrieved 28 June 2014.
  2. 1 2 Backlash (PDF), archived from the original (PDF) on 2009-02-19, retrieved 2010-02-09.
  3. 1 2 Jones, Franklin Day; Ryffel, Henry H. (1984), Gear design simplified (3rd ed.), Industrial Press Inc., p. 20, ISBN   978-0-8311-1159-5.
  4. Adler, Michael, Meccano Frontlash Mechanism, archived from the original on 2011-07-14, retrieved 2010-02-09.
  5. Gear Nomenclature, Definition of Terms with Symbols. American Gear Manufacturers Association. p. 72. ISBN   1-55589-846-7. OCLC   65562739. ANSI/AGMA 1012-G05.