The examples and perspective in this deal primarily with the United States and do not represent a worldwide view of the subject.(March 2023) |
This relies largely or entirely on a single source .(October 2012) |
This page lists the standard US nomenclature used in the description of mechanical gear construction and function, together with definitions of the terms. The terminology was established by the American Gear Manufacturers Association (AGMA), under accreditation from the American National Standards Institute (ANSI). [1]
The addendum is the height by which a tooth of a gear projects beyond (outside for external, or inside for internal) the standard pitch circle or pitch line; also, the radial distance between the pitch diameter and the outside diameter. [1]
Addendum angle in a bevel gear, is the angle between face cone and pitch cone. [1]
The addendum circle coincides with the tops of the teeth of a gear and is concentric with the standard (reference) pitch circle and radially distant from it by the amount of the addendum. For external gears, the addendum circle lies on the outside cylinder while on internal gears the addendum circle lies on the internal cylinder. [1]
Apex to back, in a bevel gear or hypoid gear, is the distance in the direction of the axis from the apex of the pitch cone to a locating surface at the back of the blank. [1]
The back angle of a bevel gear is the angle between an element of the back cone and a plane of rotation, and usually is equal to the pitch angle. [1]
The back cone of a bevel or hypoid gear is an imaginary cone tangent to the outer ends of the teeth, with its elements perpendicular to those of the pitch cone. The surface of the gear blank at the outer ends of the teeth is customarily formed to such a back cone. [1]
Back cone distance in a bevel gear is the distance along an element of the back cone from its apex to the pitch cone. [1]
In mechanical engineering, backlash is the striking back of connected wheels in a piece of mechanism when pressure is applied. Another source defines it as the maximum distance through which one part of something can be moved without moving a connected part. It is also called lash or play. In the context of gears, backlash is clearance between mating components, or the amount of lost motion due to clearance or slackness when movement is reversed and contact is re-established. In a pair of gears, backlash is the amount of clearance between mated gear teeth.
Backlash is unavoidable for nearly all reversing mechanical couplings, although its effects can be negated. Depending on the application it may or may not be desirable. Reasons for requiring backlash include allowing for lubrication and thermal expansion, and to prevent jamming. Backlash may also result from manufacturing errors and deflection under load.
The base circle of an involute gear is the circle from which involute tooth profiles are derived. [1]
The base cylinder corresponds to the base circle, and is the cylinder from which involute tooth surfaces are developed. [1]
The base diameter of an involute gear is the diameter of the base circle. [1]
The term bull gear is used to refer to the larger of two spur gears that are in engagement in any machine. The smaller gear is usually referred to as a pinion. [2]
Center distance (operating) is the shortest distance between non-intersecting axes. It is measured along the mutual perpendicular to the axes, called the line of centers. It applies to spur gears, parallel axis or crossed axis helical gears, and worm gearing. [1]
The central plane of a worm gear is perpendicular to the gear axis and contains the common perpendicular of the gear and worm axes. In the usual case with axes at right angles, it contains the worm axis. [1]
The Circular Pitch defines the width of one tooth and one gap measured on an arc on the pitch circle; in other words, this is the distance on the pitch circle from a point on one tooth to the corresponding point on the adjacent tooth. This is equal to π divided by the Diametral Pitch.
CP = Circular Pitch in inches
DP = Diametral Pitch
CP = π / DP [3]
The composite action test (double flank) is a method of inspection in which the work gear is rolled in tight double flank contact with a master gear or a specified gear, in order to determine (radial) composite variations (deviations). The composite action test must be made on a variable center distance composite action test device. [1] and this is composite action test for double flank
Cone distance in a bevel gear is the general term for the distance along an element of the pitch cone from the apex to any given position in the teeth. [1]
Outer cone distance in bevel gears is the distance from the apex of the pitch cone to the outer ends of the teeth. When not otherwise specified, the short term cone distance is understood to be outer cone distance.
Mean cone distance in bevel gears is the distance from the apex of the pitch cone to the middle of the face width.
Inner cone distance in bevel gears is the distance from the apex of the pitch cone to the inner ends of the teeth.
Conjugate gears transmit uniform rotary motion from one shaft to another by means of gear teeth. The normals to the profiles of these teeth, at all points of contact, must pass through a fixed point in the common centerline of the two shafts. [1] Usually conjugate gear tooth is made to suit the profile of other gear which is not made based on standard practice.
A crossed helical gear is a gear that operate on non-intersecting, non-parallel axes.
The term crossed helical gears has superseded the term spiral gears. There is theoretically point contact between the teeth at any instant. They have teeth of the same or different helix angles, of the same or opposite hand. A combination of spur and helical or other types can operate on crossed axes. [1]
The crossing point is the point of intersection of bevel gear axes; also the apparent point of intersection of the axes in hypoid gears, crossed helical gears, worm gears, and offset face gears, when projected to a plane parallel to both axes. [1]
The crown circle in a bevel or hypoid gear is the circle of intersection of the back cone and face cone. [1]
Crowned teeth have surfaces modified in the lengthwise direction to produce localized contact or to prevent contact at their ends. [1]
The Diametral Pitch (DP) is the number of teeth per inch of diameter of the pitch circle. The units of DP are inverse inches (1/in). [3]
DP = Diametral Pitch
PD = Pitch Circle Diameter in inches
CP = Circular Pitch in inches
n = Number of Teeth
DP = n / PD
The Diametral Pitch (DP) is equal to π divided by the Circular Pitch (CP).
DP = 3.1416 / CP
Dedendum angle in a bevel gear, is the angle between elements of the root cone and pitch cone. [1]
Equivalent pitch radius is the radius of the pitch circle in a cross section of gear teeth in any plane other than a plane of rotation. It is properly the radius of curvature of the pitch surface in the given cross section. Examples of such sections are the transverse section of bevel gear teeth and the normal section of helical teeth.
Face (tip) angle in a bevel or hypoid gear, is the angle between an element of the face cone and its axis. [1]
The face cone, also known as the tip cone is the imaginary surface that coincides with the tops of the teeth of a bevel or hypoid gear. [1]
A face gear set typically consists of a disk-shaped gear, grooved on at least one face, in combination with a spur, helical, or conical pinion. A face gear has a planar pitch surface and a planar root surface, both of which are perpendicular to the axis of rotation. [1] It can also be referred to as a face wheel, crown gear, crown wheel, contrate gear or contrate wheel.
The face width of a gear is the length of teeth in an axial plane. For double helical, it does not include the gap. [1]
Total face width is the actual dimension of a gear blank including the portion that exceeds the effective face width, or as in double helical gears where the total face width includes any distance or gap separating right hand and left hand helices.
For a cylindrical gear, effective face width is the portion that contacts the mating teeth. One member of a pair of gears may engage only a portion of its mate.
For a bevel gear, different definitions for effective face width are applicable.
Form diameter is the diameter of a circle at which the trochoid (fillet curve) produced by the tooling intersects, or joins, the involute or specified profile. Although these terms are not preferred, it is also known as the true involute form diameter (TIF), start of involute diameter (SOI), or when undercut exists, as the undercut diameter. This diameter cannot be less than the base circle diameter. [1]
The front angle, in a bevel gear, denotes the angle between an element of the front cone and a plane of rotation, and usually equals the pitch angle. [1]
The front cone of a hypoid or bevel gear is an imaginary cone tangent to the inner ends of the teeth, with its elements perpendicular to those of the pitch cone. The surface of the gear blank at the inner ends of the teeth is customarily formed to such a front cone, but sometimes may be a plane on a pinion or a cylinder in a nearly flat gear. [1]
A gear center is the center of the pitch circle. [1]
The gear range is difference between the highest and lowest gear ratios and may be expressed as a percentage (e.g., 500%) or as a ratio (e.g., 5:1).
The heel of a tooth on a bevel gear or pinion is the portion of the tooth surface near its outer end.
The toe of a tooth on a bevel gear or pinion is the portion of the tooth surface near its inner end. [1]
A helical rack has a planar pitch surface and teeth that are oblique to the direction of motion. [1]
Helix angle is the angle between the helical tooth face and an equivalent spur tooth face. For the same lead , the helix angle is greater for larger gear diameters. It is understood to be measured at the standard pitch diameter unless otherwise specified.
Hobbing is a machining process for making gears, splines, and sprockets using a cylindrical tool with helical cutting teeth known as a hob.
The displacement of any tooth flank from its theoretical position, relative to a datum tooth flank.
Distinction is made as to the direction and algebraic sign of this reading. A condition wherein the actual tooth flank position was nearer to the datum tooth flank, in the specified measuring path direction (clockwise or counterclockwise), than the theoretical position would be considered a minus (-) deviation. A condition wherein the actual tooth flank position was farther from the datum tooth flank, in the specified measuring path direction, than the theoretical position would be considered a plus (+) deviation.
The direction of tolerancing for index deviation along the arc of the tolerance diameter circle within the transverse plane. [1]
The inside cylinder is the surface that coincides with the tops of the teeth of an internal cylindrical gear. [1]
Inside diameter is the diameter of the addendum circle of an internal gear, this is also known as minor diameter. [1]
Expressed as θ, the involute polar angle is the angle between a radius vector to a point, P, on an involute curve and a radial line to the intersection, A, of the curve with the base circle. [1]
Expressed as ε, the involute roll angle is the angle whose arc on the base circle of radius unity equals the tangent of the pressure angle at a selected point on the involute. [1]
Involute teeth of spur gears, helical gears, and worms are those in which the profile in a transverse plane (exclusive of the fillet curve) is the involute of a circle. [1]
The bottom land is the surface at the bottom of a gear tooth space adjoining the fillet. [1]
Top land is the (sometimes flat) surface of the top of a gear tooth. [1]
Lead is the axial advance of a helix gear tooth during one complete turn (360°), that is, the Lead is the axial travel (length along the axle) for one single complete helical revolution about the pitch diameter of the gear.
Lead angle is 90° to the helix angle between the helical tooth face and an equivalent spur tooth face. For the same lead, the lead angle is larger for smaller gear diameters. It is understood to be measured at the standard pitch diameter unless otherwise specified.
A spur gear tooth has a lead angle of 90°, and a helix angle of 0°.
See: Helix angle
The line of centers connects the centers of the pitch circles of two engaging gears; it is also the common perpendicular of the axes in crossed helical gears and worm gears. When one of the gears is a rack, the line of centers is perpendicular to its pitch line. [1]
The module is the measure of gear tooth size which is normally used for metric system gears. It is similar to the Diametral Pitch (DP), which is commonly used for UK system (inch measure) gears but they differ in the units used and in that they bear a reciprocal relationship. Module is the pitch circle diameter divided by the number of teeth. Module may also be applied to UK system gears, using inch units, but this usage is not in common use. Module is commonly expressed in units of millimeters (mm).
MM = Metric Module
PD = Pitch Circle Diameter in mm
n = Number of Teeth
MM = PD / n
UK system (inch measure) gears are more commonly specified with the Diametral Pitch (DP) which is the number of teeth per inch of diameter of the pitch circle. The units of DP are inverse inches (1/in).
DP = Diametral Pitch
PD = Pitch Circle Diameter in inches
n = Number of Teeth
DP = n / PD
When converting between module and DP there is an inverse relationship and normally a conversion between the two units of measure (inches and millimeter). Taking both of these into consideration the formulae for conversion are:
MM = 25.4 / DP
and
DP = 25.4 / MM
Mounting distance, for assembling bevel gears or hypoid gears, is the distance from the crossing point of the axes to a locating surface of a gear, which may be at either back or front. [1]
Normal module is the value of the module in a normal plane of a helical gear or worm. [1]
A normal plane is normal to a tooth surface at a pitch point, and perpendicular to the pitch plane. In a helical rack, a normal plane is normal to all the teeth it intersects. In a helical gear, however, a plane can be normal to only one tooth at a point lying in the plane surface. At such a point, the normal plane contains the line normal to the tooth surface.
Important positions of a normal plane in tooth measurement and tool design of helical teeth and worm threads are:
In a spiral bevel gear, one of the positions of a normal plane is at a mean point and the plane is normal to the tooth trace. [1]
Offset is the perpendicular distance between the axes of hypoid gears or offset face gears. [1]
In the adjacent diagram, (a) and (b) are referred to as having an offset below center, while those in (c) and (d) have an offset above center. In determining the direction of offset, it is customary to look at the gear with the pinion at the right. For below center offset the pinion has a left hand spiral, and for above center offset the pinion has a right hand spiral.
The outside (tip or addendum) cylinder is the surface that coincides with the tops of the teeth of an external cylindrical gear. [1]
The outside diameter of a gear is the diameter of the addendum (tip) circle. In a bevel gear it is the diameter of the crown circle. In a throated worm gear it is the maximum diameter of the blank. The term applies to external gears, this is can also be known from major diameter. [1]
A pinion is a round gear and usually refers to the smaller of two meshed gears.
Pitch angle in bevel gears is the angle between an element of a pitch cone and its axis. In external and internal bevel gears, the pitch angles are respectively less than and greater than 90 degrees. [1]
A pitch circle (operating) is the curve of intersection of a pitch surface of revolution and a plane of rotation. It is the imaginary circle that rolls without slipping with a pitch circle of a mating gear. [1] These are the outlines of mating gears. Many important measurements are taken on and from this circle. [1]
A pitch cone is the imaginary cone in a bevel gear that rolls without slipping on a pitch surface of another gear. [1]
The pitch helix is the intersection of the tooth surface and the pitch cylinder of a helical gear or cylindrical worm. [1]
The base helix of a helical, involute gear or involute worm lies on its base cylinder.
Base helix angle is the helix angle on the base cylinder of involute helical teeth or threads.
Base lead angle is the lead angle on the base cylinder. It is the complement of the base helix angle.
The outside (tip or addendum) helix is the intersection of the tooth surface and the outside cylinder of a helical gear or cylindrical worm.
Outside helix angle is the helix angle on the outside cylinder.
Outside lead angle is the lead angle on the outside cylinder. It is the complement of the outside helix angle.
A normal helix is a helix on the pitch cylinder, normal to the pitch helix.
The pitch line corresponds, in the cross section of a rack, to the pitch circle (operating) in the cross section of a gear. [1]
The pitch point is the point of tangency of two pitch circles (or of a pitch circle and pitch line) and is on the line of centers. [1]
Pitch surfaces are the imaginary planes, cylinders, or cones that roll together without slipping. For a constant velocity ratio, the pitch cylinders and pitch cones are circular. [1]
The pitch plane of a pair of gears is the plane perpendicular to the axial plane and tangent to the pitch surfaces. A pitch plane in an individual gear may be any plane tangent to its pitch surface.
The pitch plane of a rack or in a crown gear is the imaginary planar surface that rolls without slipping with a pitch cylinder or pitch cone of another gear. The pitch plane of a rack or crown gear is also the pitch surface. [1]
The transverse plane is perpendicular to the axial plane and to the pitch plane. In gears with parallel axes, the transverse and the plane of rotation coincide. [1]
Principal directions are directions in the pitch plane, and correspond to the principal cross sections of a tooth.
The axial direction is a direction parallel to an axis.
The transverse direction is a direction within a transverse plane.
The normal direction is a direction within a normal plane. [1]
Profile radius of curvature is the radius of curvature of a tooth profile, usually at the pitch point or a point of contact. It varies continuously along the involute profile. [1]
Tooth-to-tooth radial composite deviation (double flank) is the greatest change in center distance while the gear being tested is rotated through any angle of 360 degree/z during double flank composite action test.
Tooth-to-tooth radial composite tolerance (double flank) is the permissible amount of tooth-to-tooth radial composite deviation.
Total radial composite deviation (double flank) is the total change in center distance while the gear being tested is rotated one complete revolution during a double flank composite action test.
Total radial composite tolerance (double flank) is the permissible amount of total radial composite deviation. [1]
Root angle in a bevel or hypoid gear, is the angle between an element of the root cone and its axis. [1]
The root circle coincides with the bottoms of the tooth spaces. [1]
The root cone is the imaginary surface that coincides with the bottoms of the tooth spaces in a bevel or hypoid gear. [1]
The root cylinder is the imaginary surface that coincides with the bottoms of the tooth spaces in a cylindrical gear. [1]
A shaft angle is the angle between the axes of two non-parallel gear shafts. In a pair of crossed helical gears, the shaft angle lies between the oppositely rotating portions of two shafts. This applies also in the case of worm gearing. In bevel gears, the shaft angle is the sum of the two pitch angles. In hypoid gears, the shaft angle is given when starting a design, and it does not have a fixed relation to the pitch angles and spiral angles. [1]
See: Crossed helical gear.
A spur gear has a cylindrical pitch surface and teeth that are parallel to the axis. [1]
A spur rack has a planar pitch surface and straight teeth that are at right angles to the direction of motion. [1]
The standard pitch circle is the circle which intersects the involute at the point where the pressure angle is equal to the profile angle of the basic rack. [1]
The standard reference pitch diameter is the diameter of the standard pitch circle. In spur and helical gears, unless otherwise specified, the standard pitch diameter is related to the number of teeth and the standard transverse pitch. Standard reference pitch diameter can be estimated by taking average of gear teeth tips diameter and gear teeth base diameter. [1]
The pitch diameter is useful in determining the spacing between gear centers because proper spacing of gears implies tangent pitch circles. The pitch diameters of two gears may be used to calculate the gear ratio in the same way the number of teeth is used.
Where is the total number of teeth, is the circular pitch, is the diametrical pitch, and is the helix angle for helical gears.
The standard reference pitch diameter is the diameter of the standard pitch circle. In spur and helical gears, unless otherwise specified, the standard pitch diameter is related to the number of teeth and the standard transverse pitch. It is obtained as: [1]
The test radius (Rr) is a number used as an arithmetic convention established to simplify the determination of the proper test distance between a master and a work gear for a composite action test. It is used as a measure of the effective size of a gear. The test radius of the master, plus the test radius of the work gear is the set up center distance on a composite action test device. Test radius is not the same as the operating pitch radii of two tightly meshing gears unless both are perfect and to basic or standard tooth thickness. [1]
The throat diameter is the diameter of the addendum circle at the central plane of a worm gear or of a double-enveloping worm gear. [1]
Throat form radius is the radius of the throat of an enveloping worm gear or of a double-enveloping worm, in an axial plane. [1]
Tip radius is the radius of the circular arc used to join a side-cutting edge and an end-cutting edge in gear cutting tools. Edge radius is an alternate term. [1]
Tip relief is a modification of a tooth profile whereby a small amount of material is removed near the tip of the gear tooth. [1]
The tooth surface (flank) forms the side of a gear tooth. [1]
It is convenient to choose one face of the gear as the reference face and to mark it with the letter “I”. The other non-reference face might be termed face “II”.
For an observer looking at the reference face, so that the tooth is seen with its tip uppermost, the right flank is on the right and the left flank is on the left. Right and left flanks are denoted by the letters “R” and “L” respectively.
A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.
A gear or gearwheel is a rotating machine part typically used to transmit rotational motion and/or torque by means of a series of teeth that engage with compatible teeth of another gear or other part. The teeth can be integral saliences or cavities machined on the part, or separate pegs inserted into it. In the latter case, the gear is usually called a cogwheel. A cog may be one of those pegs or the whole gear. Two or more meshing gears are called a gear train.
A helix is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called a helicoid.
A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert between rotational motion and linear motion: rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate.
The involute gear profile is the most commonly used system for gearing today, with cycloid gearing still used for some specialties such as clocks. In an involute gear, the profiles of the teeth are involutes of a circle. The involute of a circle is the spiraling curve traced by the end of an imaginary taut string unwinding itself from that stationary circle called the base circle, or (equivalently) a triangle wave projected on the circumference of a circle.
Hobbing is a machining process for gear cutting, cutting splines, and cutting sprockets using a hobbing machine, a specialized milling machine. The teeth or splines of the gear are progressively cut into the material by a series of cuts made by a cutting tool called a hob.
A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage.
Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.
A worm drive is a gear arrangement in which a worm meshes with a worm wheel. Its main purpose is to translate the motion of two perpendicular axes or to translate circular motion to linear motion .The two elements are also called the worm screw and worm gear. The terminology is often confused by imprecise use of the term worm gear to refer to the worm, the worm wheel, or the worm drive as a unit.
A cycloidal gear is a toothed gear with a cycloidal profile. Such gears are used in mechanical clocks and watches, rather than the involute gear form used for most other gears. Cycloidal gears have advantages over involute gears in such applications in being able to be produced flat, and having fewer points of contact.
Bevel gears are gears where the axes of the two shafts intersect and the tooth-bearing faces of the gears themselves are conically shaped. Bevel gears are most often mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well. The pitch surface of bevel gears is a cone, known as a pitch cone. Bevel gears change the axis of rotation of rotational power delivery and are widely used in mechanical settings.
Spur gears or straight-cut gears are the simplest type of gear. They consist of a cylinder or disk with teeth projecting radially. Viewing the gear at 90 degrees from the shaft length the tooth faces are straight and aligned parallel to the axis of rotation. Looking down the length of the shaft, a tooth's cross section is usually not triangular. Instead of being straight the sides of the cross section have a curved form to achieve a constant drive ratio. Spur gears mesh together correctly only if fitted to parallel shafts. No axial thrust is created by the tooth loads. Spur gears are excellent at moderate speeds but tend to be noisy at high speeds.
In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."p. 1-8 An example, in the context of gears and gear trains, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a valve train with mechanical tappets, where a certain range of lash is necessary for the valves to work properly.
Pressure angle in relation to gear teeth, also known as the angle of obliquity, is the angle between the tooth face and the gear wheel tangent. It is more precisely the angle at a pitch point between the line of pressure and the plane tangent to the pitch surface. The pressure angle gives the direction normal to the tooth profile. The pressure angle is equal to the profile angle at the standard pitch circle and can be termed the "standard" pressure angle at that point. Standard values are 14.5 and 20 degrees. Earlier gears with pressure angle 14.5 were commonly used because the cosine is larger for a smaller angle, providing more power transmission and less pressure on the bearing; however, teeth with smaller pressure angles are weaker. To run gears together properly their pressure angles must be matched.
A duplex worm or dual lead worm is a worm gear set where the two flanks are manufactured with slightly different modules and/or diameter quotients. As a result of this, different lead angles on both tooth profiles are obtained, so that the tooth thickness is continuously increasing all over the worm length, while the gap between two threads is decreasing. This allows control of backlash.
The profile angle of a gear is the angle at a specified pitch point between a line tangent to a tooth surface and the line normal to the pitch surface. This definition is applicable to every type of gear for which a pitch surface can be defined. The profile angle gives the direction of the tangent to a tooth profile.
In mechanical engineering, a helix angle is the angle between any helix and an axial line on its right, circular cylinder or cone. Common applications are screws, helical gears, and worm gears.
Lead is the axial advance of a helix or screw during one complete turn (360°) The lead for a screw thread is the axial travel for a single revolution.
A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight teeth.
In mechanical engineering, kinematic synthesis determines the size and configuration of mechanisms that shape the flow of power through a mechanical system, or machine, to achieve a desired performance. The word synthesis refers to combining parts to form a whole. Hartenberg and Denavit describe kinematic synthesis as
...it is design, the creation of something new. Kinematically, it is the conversion of a motion idea into hardware.
{{cite web}}
: CS1 maint: multiple names: authors list (link)