Herringbone gear

Last updated
Herringbone gear Engrenages - 85.488 -.jpg
Herringbone gear

A herringbone gear, a specific type of double helical gear, [1] is a special type of gear that is a side-to-side (not face-to-face) combination of two helical gears of opposite hands. [2] From the top, each helical groove of this gear looks like the letter V, and many together form a herringbone pattern (resembling the bones of a fish such as a herring). Unlike helical gears, herringbone gears do not produce an additional axial load.

Contents

Like helical gears, they have the advantage of transferring power smoothly, because more than two teeth will be enmeshed at any moment in time. Their advantage over the helical gears is that the side-thrust of one half is balanced by that of the other half. This means that herringbone gears can be used in torque gearboxes without requiring a substantial thrust bearing. Because of this, herringbone gears were an important step in the introduction of the steam turbine to marine propulsion.[ citation needed ]

Manufacture

Precision herringbone gears are more difficult to manufacture than equivalent spur or helical gears and consequently are more expensive, so typically they are used in heavy machinery.

Where the oppositely angled teeth meet in the middle of a herringbone gear, the alignment may be such that tooth tip meets tooth tip, or the alignment may be staggered, so that tooth tip meets tooth trough. The latter alignment is the unique defining characteristic of a Wuest type herringbone gear, named after its inventor Caspar Wüst-Kunz.

This herringbone bevel gear was made by Citroen and installed around 1927 in small Mirejovice hydropower plant on Vltava in the Czech Republic, connecting a Francis turbine to the generator. It worked flawlessly until 2011. Double-helical bevel gear Citroen.jpg
This herringbone bevel gear was made by Citroën and installed around 1927 in small Miřejovice hydropower plant on Vltava in the Czech Republic, connecting a Francis turbine to the generator. It worked flawlessly until 2011.

A disadvantage of the herringbone gear is that it cannot be cut by simple gear hobbing machines, as the cutter would run into the other half of the gear. Solutions to this have included assembling small gears by stacking two helical gears together, cutting the gears with a central groove to provide clearance as per Wüst patent, and (particularly in the early days) by casting the gears to an accurate pattern and without further machining. With the first two methods of fabrication, herringbone gears had a central channel separating the two oppositely-angled courses of teeth. This was necessary to permit the shaving tool to run out of the groove.

The development of the Sykes gear shaper in the 1910s [3] made it possible to have continuous teeth with no central gap. Sunderland, also in England, also produced a herringbone cutting machine. The Sykes uses cylindrical guides and round cutters; the Sunderland uses straight guides and rack-type cutters. The W. E. Sykes Co. dissolved in 1983–1984, since then it has been common practice to obtain an older machine and rebuild it if necessary to create this unique type of gear.[ citation needed ] Recently, the Bourn and Koch company has developed a CNC-controlled derivation of the W. E. Sykes design called the HDS1600-300.[ promotion? ] This machine, like the Sykes gear shaper, has the ability to generate a true apex without the need for a clearance groove cut around the gear. This allows the gears to be used in positive displacement pumping applications, as well as power transmission. Herringbone gears with low weight, accuracy and strength may be 3D printed.

During both World Wars marine gearboxes for naval ships were a major production bottleneck for surging warship demand, and other propulsion options like triple-expansion steam engines and diesel-electric had to be implemented for less important and slower ships like destroyer escorts.

Citroën

Citroen Type A final drive herringbone pinion and crownwheel Herringbone double-helical bevel gears, Citroens patent (Autocar Handbook, Ninth edition).jpg
Citroën Type A final drive herringbone pinion and crownwheel

The logo of the car maker Citroën is a graphic representation of a herringbone gear, reflecting André Citroën's earlier involvement in the manufacture of these gears. Early Mors and Citroën cars used a herringbone bevel gear final drive in the rear axle. [4]

Panhard Dyna X and successor cars (1948–1967) used double helical gears in the transaxle and for the camshaft timing gears in the engine.

Related Research Articles

<span class="mw-page-title-main">Gear</span> Rotating circular machine part with teeth that mesh with another toothed part

A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth, which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic principle behind the operation of gears is analogous to the basic principle of levers. A gear may also be known informally as a cog. Geared devices can change the speed, torque, and direction of a power source. Gears of different sizes produce a change in torque, creating a mechanical advantage, through their gear ratio, and thus may be considered a simple machine. The rotational speeds, and the torques, of two meshing gears differ in proportion to their diameters. The teeth on the two meshing gears all have the same shape.

<span class="mw-page-title-main">Rack and pinion</span> Type of linear actuator

A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert rotational motion into linear motion. Rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate. A rack and pinion drive can use both straight and helical gears. Though some suggest helical gears are quieter in operation, no hard evidence supports this theory. Helical racks, while being more affordable, have proven to increase side torque on the datums, increasing operating temperature leading to premature wear. Straight racks require a lower driving force and offer increased torque and speed per percentage of gear ratio which allows lower operating temperature and lessens viscal friction and energy use. The maximum force that can be transmitted in a rack and pinion mechanism is determined by the tooth pitch and the size of the pinion as well as the gear ratio.

<span class="mw-page-title-main">Hobbing</span> Process used to cut teeth into gears

Hobbing is a machining process for gear cutting, cutting splines, and cutting sprockets on a hobbing machine, which is a special type of milling machine. The teeth or splines of the gear are progressively cut into the material by a series of cuts made by a cutting tool called a hob.

<span class="mw-page-title-main">Drive shaft</span> Mechanical component for transmitting torque and rotation

A drive shaft, driveshaft, driving shaft, tailshaft, propeller shaft, or Cardan shaft is a component for transmitting mechanical power and torque and rotation, usually used to connect other components of a drivetrain that cannot be connected directly because of distance or the need to allow for relative movement between them.

<span class="mw-page-title-main">Gear pump</span> Type of pump which uses the meshing of gears to push fluids

A gear pump uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The gear pump was invented around 1600 by Johannes Kepler.

<span class="mw-page-title-main">Edwin R. Fellows</span>

Edwin R. Fellows was an American inventor and entrepreneur from Torrington, Connecticut who designed and built a new type of gear shaper in 1896 and, with the mentoring of James Hartness, left the Jones & Lamson Machine Company to co-found the Fellows Gear Shaper Company in Springfield, Vermont, which became one of the leading firms in the gear-cutting segment of the machine tool industry. Fellows' machines made a vital contribution to the mass production of effective and reliable gear transmissions for the nascent automotive industry. By the conclusion of World War II, Fellows Gear Shaper Company machines were in defense contractor plants, manufacturing geared components for aircraft engines, tanks, instruments, cameras, fuses and other war-time materiel.

<span class="mw-page-title-main">Panhard Dyna Z</span> Motor vehicle

The Panhard Dyna Z is a lightweight motor car produced by Panhard of France from 1954 to 1959. It was first presented to the press at a Paris restaurant named Les Ambassadeurs on 17 June 1953 and entered production the following year. In 1959, it was replaced by the Panhard PL 17.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

<span class="mw-page-title-main">Worm drive</span> Gear arrangement

A worm drive is a gear arrangement in which a worm meshes with a worm wheel. The two elements are also called the worm screw and worm gear. The terminology is often confused by imprecise use of the term worm gear to refer to the worm, the worm wheel, or the worm drive as a unit.

<span class="mw-page-title-main">Reduction drive</span>

A reduction drive is a mechanical device to shift rotational speed. A planetary reduction drive is a small scale version using ball bearings in an epicyclic arrangement instead of toothed gears.

Gear cutting is any machining process for creating a gear. The most common gear-cutting processes include hobbing, broaching, milling, grinding, and skiving. Such cutting operations may occur either after or instead of forming processes such as forging, extruding, investment casting, or sand casting.

<span class="mw-page-title-main">Spur gear</span> Simplest type of gear

Spur gears or straight-cut gears are the simplest type of gear. They consist of a cylinder or disk with teeth projecting radially. Viewing the gear at 90 degrees from the shaft length the tooth faces are straight and aligned parallel to the axis of rotation. Looking down the length of the shaft, a tooth's cross section is usually not triangular. Instead of being straight the sides of the cross section have a curved form to achieve a constant drive ratio. Spur gears mesh together correctly only if fitted to parallel shafts. No axial thrust is created by the tooth loads. Spur gears are excellent at moderate speeds but tend to be noisy at high speeds.

Gear manufacturing refers to the making of gears. Gears can be manufactured by a variety of processes, including casting, forging, extrusion, powder metallurgy, and blanking. As a general rule, however, machining is applied to achieve the final dimensions, shape and surface finish in the gear. The initial operations that produce a semifinishing part ready for gear machining as referred to as blanking operations; the starting product in gear machining is called a gear blank.

<span class="mw-page-title-main">Backlash (engineering)</span> Clearance between mating components

In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."p. 1-8 An example, in the context of gears and gear trains, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a valve train with mechanical tappets, where a certain range of lash is necessary for the valves to work properly.

<span class="mw-page-title-main">Spiral bevel gear</span>

A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight teeth.

A spline is a ridge or tooth on a drive shaft that matches with groove in a mating piece and transfer torque to it, maintaining the angular correspondence between them.

<span class="mw-page-title-main">Gear shaping</span>

Gear shaping is a machining process for creating teeth on a gear using a cutter. Gear shaping is a convenient and versatile method of gear cutting. It involves continuous, same-plane rotational cutting of gear.

<span class="mw-page-title-main">Bar grip</span>

Bar grip tyres, or 'NDT' in US military parlance, are an early tyre tread pattern developed for off-road use.

<span class="mw-page-title-main">Wuest type herringbone gear</span>

A Wuest type herringbone gear, invented by Swiss engineer Caspar Wüst-Kunz in early 1900s, is a special type of herringbone gear wherein "the teeth on opposite sides of the center line are staggered by an amount equal to one half the circular pitch". By having the teeth of two sides staggered, the gear wears more evenly at the slight cost of strength.

References

  1. Double Helical Gears sometimes known as Herringbone Gears, Hewitt & Topham, retrieved 2015-02-14
  2. "Herringbone gears". Archived from the original on December 25, 2007. Retrieved April 28, 2008.
  3. GB 191101759
  4. The Autocar (c. 1919). Autocar Handbook (Ninth ed.). London: Iliffe & Sons.