Bacterial fruit blotch

Last updated
Bacterial fruit blotch
Common namesBFB
Causal agents Acidovorax citrulli
Hosts Cucurbitaceae (melon and watermelon)
EPPO Code PSDMAC

Bacterial fruit blotch (BFB) affects cucurbit plants around the world and can be a serious threat to farmers because it spreads through contaminated seed. BFB is the result of an infection by Gram-negative Acidovorax citrulli bacteria, which has only been recently studied in detail. [1] Members of A. citrulli are Gram-negative rod shaped bacteria with the dimensions 0.5× 1.7 μm. They move via polar flagella. [2] No known reliable sources of BFB resistance exist today, so seed hygiene and thorough testing of breeding facilities are the best way to control spreading. No known control methods, however, are extremely reliable for reducing BFB infection. [3]

Contents

Hosts and symptoms

A. citrulli causes disease in the family Cucurbitaceae, with the most significant losses in melon and watermelon. It also affects pumpkin, zucchini and cucumber but these are not as economically devastated by fruit blotch as the melons. [4] A. citrulli’s economic hosts are cucurbits, but the bacteria can also infect volunteer seedlings of other families. This makes it easier for the pathogen to spread. Symptoms of melon with BFB include water soaked lesions on cotyledons, and hypocotyls, leading to collapse and death. Lesions will look necrotic and may be near veins. On fruit, water soaked lesions will be small and irregular (they average 1 cm diameter and may be sunken) but then progress through the rind. The fruit then decays and cracks when the pathogen causes necrosis. These lesions open the plant to secondary infections as well. A. citrulli then colonizes the pulp, eventually allowing the seed to become contaminated. [3] On adult leaves, the symptoms appear the same as the ones left by other abiotic or biotic stressors so diagnosis is not as straight forward. They include large irregular leaf lesions which are brown to black in watermelon and reddish brown in melon. Bacterial fruit blotch lesions spread along main midrib in adult leaves. [5]

Disease cycle

Acidivorax citrulli is primarily seed transmitted. [5] Seeds containing A. citrulli are difficult to treat, as the bacteria is found deep within the tissue, and can be viable for 35 years or more. [6] There are still some aspects of the epidemiology that are unknown. It has been found that the pathogen initially starts its life as a saprophyte, relying on the seed's degrading action of complex sugars, and switches to a pathogenic growth mode when the seedling emerges. [7] While this is a step forward, there is little knowledge of the pathogen's movement in the plant, how it overwinters, or its alternate hosts. Without this knowledge, its complete mode of reproduction (an important tool in reducing epidemic) is still unknown.

The infection of fruit is better understood. Bacteria typically enter the fruit through their stomata, three to four weeks after fruit set. As the fruit develops, wax fills and blocks stomata, eliminating entry to the bacteria. While the maturation of fruit restricts entry to the bacteria, mature fruits are more susceptible to symptoms of the bacteria than immature fruit. Fruit typically show symptoms in the final weeks of development, leaving a lag period between infection and symptoms. The fruit typically becomes infected early in development, and shows symptoms near harvest, making diagnosis and prevention difficult. [8] The only known way for the bacteria to get into production fields is by introduction of infected seeds. This makes sanitation highly important.

Environment

A. citrulli’s ability to infect hosts depends on environmental factors. It relies on temperature and humidity to thrive. High temperatures and humidity, plus high levels of bacteria on/within the seed are required to see infection. [3] The amount of bacteria on/within seed is based on the intensity of fruit infection in the previous season (the seed is infected when the fruit tissue surrounding it transmits the bacteria). Greenhouses are perfect environments for seed to seedling transfer of A. citrulli because it is warm, humid, and tightly filled with host plants. For this reason, many transplants are infected before they are transplanted to the field. When direct seeded, cucurbits may have a better chance for survival because the environment in the field is more variable and may be cooler/drier than the greenhouse. This makes it more difficult for the pathogen to infect. [3]

Management

If seed is to be transported from country to country, it generally needs to be free of pathogens before the company will accept it. Japan legally restricts the admission of seeds carrying Acidivorax citrulli bacteria. Seed can be cleaned using a dry heat treatment to remove the pathogen with some success. [9] A treatment of 85° for 3–5 days is effective for removing the pathogen. Different cucurbit seeds respond to this treatment in different ways, and some species (large-seeded squash, wax gourd, bottle gourd) have reduced germination following a dry heat treatment. This cleaning method can remove other pathogens found within seeds, but has been found to be especially useful for BFB. Prior to planting, seed should be checked to ensure that it is not infected with BFB. Companies such as Eurofins STA Laboratories and Summit Plant Labs test seed for cleanliness. [10] [11]

Since the pathogen is difficult to eradicate, plant resistance to the pathogen can provide an alternative to removing the pathogen. While research is being carried out to produce cultivars that are resistant, progress has not been quick. Several accessions have been reported to have resistance to BFB in watermelon and melon, but are not widely accepted to date. While these advances are promising, there are still no commercial cultivars with significant resistance to BFB.

Importance

The first plant pathogenic bacteria was determined in 1878 and many more have been identified since. [12] However, research on Bacterial Fruit Blotch began much later than many other plant diseases. It was not until the 1980s that the disease began to impact the fruit industry economically. Since the discovery of BFB, millions of dollars have been lost to crop rot, however no exact dollar amount has been identified. The first report of BFB research came in 1965 when a seed-borne phytobacterium was isolated from diseased plant tissue from Turkey. The USDA originally thought the disease was exclusively in seedlings, however the first BFB outbreak in 1987 proved that entire fields could be lost to fruit decay. Today, many outbreaks in the United States result in 90-100% fruit loss per diseased field, prompting lawsuits by farmers over contaminated seed. In the 1990s, A. citrulli was found to infect most other cucurbit species. During this time, Bacterial Fruit Blotch spread through cucurbit fields around the globe very quickly. It appears to spread only through contaminated seed, however non-economic host plants can carry the disease on seed as well, making it difficult to control. BFB is a unique disease because its late discovery gives scientists an opportunity to track the outbreak from the start. Like all plant diseases, the BFB epidemic is related to the interactions of a triangle of disease components (Pathogen, Host, and Environment). Therefore, BFB provides an opportunity to better understand how to track these interactions in real time while this disease spreads. [2]

Related Research Articles

<span class="mw-page-title-main">Fire blight</span> Disease of some Rosaceae trees (especially apples and pears) caused by Erwinia amylovora

Fire blight, also written fireblight, is a contagious disease affecting apples, pears, and some other members of the family Rosaceae. It is a serious concern to apple and pear producers. Under optimal conditions, it can destroy an entire orchard in a single growing season.

<span class="mw-page-title-main">Powdery mildew</span> Fungal plant disease

Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of ascomycete fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as its symptoms are quite distinctive. Infected plants display white powdery spots on the leaves and stems. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.

<span class="mw-page-title-main">Fusarium wilt</span> Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

<span class="mw-page-title-main">Leaf spot</span> Type of area of a leaf

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<span class="mw-page-title-main">Stewart's wilt</span> Bacterial disease of corn

Stewart's wilt is a serious bacterial disease of corn caused by the bacterium Pantoea stewartii. This bacterium affects plants, particularly types of maize such as sweet, flint, dent, flour, and popcorn. The disease is also known as bacterial wilt or bacterial leaf blight and has shown to be quite problematic in sweet corn. The disease is endemic in the mid-Atlantic and Ohio River Valley regions and in the southern portion of the Corn Belt.

<i>Dickeya dadantii</i> Species of flowering plant

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

<i>Papaya ringspot virus</i> Species of virus

Papaya ringspot virus (PRSV) is a pathogenic plant virus in the genus Potyvirus and the virus family Potyviridae which primarily infects the papaya tree.

<i>Alternaria alternata</i> Species of fungus

Alternaria alternata is a fungus which has been recorded causing leaf spot and other diseases on over 380 host species of plant. It is an opportunistic pathogen on numerous hosts causing leaf spots, rots and blights on many plant parts.

Acidovorax citrulli is a Gram-negative, biotrophic bacterium causes seedling blight and bacterial fruit blotch (BFB) of cucurbits. On the basis of carbon source utilization, DNA-fingerprinting profiles, whole-cell fatty-acid composition utilization and pathogenicity assays, A. citrulli is divided into two distinct groups. The group I strains are mainly associated with non-watermelon plants, while group II includes strains that were mainly isolated from watermelon.

<span class="mw-page-title-main">Halo blight</span>

Halo blight of bean is a bacterial disease caused by Pseudomonas syringae pv. phaseolicola. Halo blight’s pathogen is a gram-negative, aerobic, polar-flagellated and non-spore forming bacteria. This bacterial disease was first discovered in the early 1920s, and rapidly became the major disease of beans throughout the world. The disease favors the places where temperatures are moderate and plentiful inoculum is available.

<i>Clavibacter michiganensis</i> Species of bacterium

Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.

Xanthomonas arboricola is a species of bacteria. This phytopathogenic bacterium can cause disease in trees like Prunus, hazelnut and walnut.

Alternaria dauci is a plant pathogen. The English name of the disease it incites is "carrot leaf blight".

<i>Phytophthora capsici</i> Species of single-celled organism

Phytophthora capsici is an oomycete plant pathogen that causes blight and fruit rot of peppers and other important commercial crops. It was first described by L. Leonian at the New Mexico State University Agricultural Experiment Station in Las Cruces in 1922 on a crop of chili peppers. In 1967, a study by M. M. Satour and E. E. Butler found 45 species of cultivated plants and weeds susceptible to P. capsici In Greek, Phytophthora capsici means "plant destroyer of capsicums". P. capsici has a wide range of hosts including members of the families Solanaceae and Cucurbitaceae as well as Fabaceae.

<i>Didymella bryoniae</i> Species of fungus

Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes gummy stem blight on the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum. When this pathogen infects the fruit of cucurbits it is called black rot.

<span class="mw-page-title-main">Bacterial soft rot</span>

Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

Gummy stem blight is a cucurbit-rot disease caused by the fungal plant pathogen Didymella bryoniae. Gummy stem blight can affect a host at any stage of growth in its development and affects all parts of the host including leaves, stems and fruits. Symptoms generally consist of circular dark tan lesions that blight the leaf, water soaked leaves, stem cankers, and gummy brown ooze that exudes from cankers, giving it the name gummy stem blight. Gummy stem blight reduces yields of edible cucurbits by devastating the vines and leaves and rotting the fruits. There are various methods to control gummy stem blight, including use of treated seed, crop rotation, using preventative fungicides, eradication of diseased material, and deep plowing previous debris.

<i>Melon necrotic spot virus</i> Species of virus

Melon necrotic spot virus (MNSV) is a virus that belongs to the genus Gammacarmovirus of the family Tombusviridae. It has been observed in several countries of the Americas, Africa, Asia, and Europe. It is considered to be an endemic virus in greenhouses and field productions of Cucurbitaceae crops, including melon, cucumber, and watermelon. MNSV is mainly spread through infected soil, seedlings, insects, and by the root-inhabiting fungus vector Olpidium bornovanus. Symptoms vary between Curbitaceae crops, but generally consist of chlorosis, brown necrotic lesions, leaf wilt, fruit decay, and plant death. Management of the disease consists of preventing infection by rotating fields and crops, steam sterilization, and disposal of infected plants. Also, treated seeds with heat or chemicals are efficient in preventing infection. MNSV is important in melon plants as it causes vast economical damage worldwide reducing significant yields.

Bacterial leaf streak (BLS), also known as black chaff, is a common bacterial disease of wheat. The disease is caused by the bacterial species Xanthomonas translucens pv. undulosa. The pathogen is found globally, but is a primary problem in the US in the lower mid-south and can reduce yields by up to 40 percent.[6] BLS is primarily seed-borne and survives in and on the seed, but may also survive in crop residue in the soil in the off-season. During the growing season, the bacteria may transfer from plant to plant by contact, but it is primarily spread by rain, wind and insect contact. The bacteria thrives in moist environments, and produces a cream to yellow bacterial ooze, which, when dry, appears light colored and scale-like, resulting in a streak on the leaves. The invasion of the head of wheat causes bands of necrotic tissue on the awns, which is called Black Chaff.[14] The disease is not easily managed, as there are no pesticides on the market for treatment of the infection. There are some resistant cultivars available, but no seed treatment exists. Some integrated pest management (IPM) techniques may be used to assist with preventing infection although, none will completely prevent the disease.[2]

References

  1. Bin Li, Yu Shi, Changlin Shan, Qing Zhou, Muhammad Ibrahim, Yanli Wang, Guoxing Wu, Hongye Li, Guanlin Xiea and Guochang Sunb. Effect of chitosan solution on the inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon. J Sci Food Agric 93 1010-1015 2013.
  2. 1 2 O. Bahar and Burdman, S. Bacterial fruit blotch: A threat to the cucurbit Industry (2010). Israel Journal of Plant Sciences. 58:19-31.
  3. 1 2 3 4 F.C.Q Carvalho, Santos, L.A., Dias, R.C.S., Mariano, R.L.R., and Souza, E.B. (2012). Selection of watermelon genotypes for resistance to bacterial fruit blotch. Euphytica. 190:169-180.
  4. B. Dutta and Scherm, H. Acidovorax citrulli Seed Inoculum Load Affects Seedling Transmission and Spread of Bacterial Blotch of Watermelon Under Greenhouse Conditions (2012). Plant Disease 96(5): 705-711.
  5. 1 2 S. Burdman and Walcott, R. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry (2012). Molecular Plant Pathology 13(8): 805-815
  6. C. C. Block, USDA-ARS North Central Plant Introduction Station, Ames, IA 50011; and L. M. Shepherd, Seed Science Center, Iowa State University, Ames, IA 50011
  7. Kameka Johnson and Ronald Walcott. Quorum Sensing Contributes to Seed-to-Seedling Transmission of Acidovorax citrulli on Watermelon. Journal of Phtyopathology 161 562-573. 2013.
  8. Questions and Answers with the experts: Bacterial Fruit Blotch. W. Wiebe, D. Hopkins, R. Walcott. https://www.seedquest.com/vegetables/watermelon/pdf/bfb.pdf
  9. M. Kubota, N. Hagiwara, T. Shirakawa. (2012) Disinfection of Seeds of Cucurbit Crops Infested with Acidovorax citrulli with Dry Heat Treatment. Journal of Phytopathology, 160 364-368.
  10. "STA Laboratories, Inc. - Products & Services - Seed Quality". Archived from the original on 2013-09-04. Retrieved 2014-04-02.
  11. "Bacterial Fruit Blotch Testing in cucurbit seeds | Summit Plant Laboratories Inc". Archived from the original on 2017-10-15. Retrieved 2013-11-14.
  12. Vidaver, A.K. and P.A. Lambrecht (2004). Bacteria as plant pathogens. The Plant Health Instructor. doi : 10.1094/PHI-I-2004-0809-01