Bagnold's fluid

Last updated

Bagnold's fluid refers to a suspension of neutrally buoyant particles in a Newtonian fluid such as water or air. The term is named after Ralph Alger Bagnold, who placed such a suspension in an annular coaxial cylindrical rheometer in order to investigate the effects of grain interaction in the suspension. [1]

Contents

Constitutive relations

By experiments described in his 1954 paper, Bagnold showed that when a shear flow is applied to the suspension, then the shear and normal stresses in the suspension may vary linearly or quadratically with the shear rate, depending on the strength of viscous effects compared to the particles' inertia.

If the shear and normal stresses in the mixture (suspension: mixture of solid and fluid) vary quadratically with the shear rate, the flow is said to satisfy Bagnold’s grain-inertia flow. If this relation is linear, then the motion is said to satisfy Bagnold’s macro-viscous flow.

These relationships, particularly the quadratic relationship, are referred to as the Bagnold rheology. Although Bagnold used wax spheres suspended in a glycerin-water-alcohol mixture, many subsequent shear-cell experiments for both wet and dry mixtures, as well as computer simulations, have confirmed these relations. [2] [3] Bagnold's rheology can be used to describe debris and granular flows down inclined slopes. [4]

Explanation

For low shear rates, dilute suspensions or suspensions involving small particles, the viscosity of the fluid is a much stronger effect than the inertia of the particles. The particles do not interact strongly with each other. By considering the forces on a particle in a fluid in the Stokes regime, it can be shown that the presence of the particle simply increases the 'effective viscosity' of the fluid.

At high shear rates, the inertia of the particles is the dominant effect, and the suspension's behaviour is governed by collisions between particles. In his 1954 paper, Bagnold justified the quadratic relationship by collisional arguments. He considered an idealised situation in which layers of particles are regular, and slide and collide regularly with each other. Then the impulse of each collision between particles is proportional to the shear rate, and so is the number of collisions per unit time; and hence the total impulse on a particle per unit time is proportional to the square of the shear rate.

Sedimentation

If the particles in the suspension are not neutrally buoyant, then the additional effect of settling also takes place. Pudasaini (2011) used the above constitutive relations to establish a scaling law for the sedimentation time. It is found analytically that the macro-viscous fluid settles much faster than the grain-inertia fluid, as manifested by dispersive pressure. [5]

Given the same time, the macroviscous fluid is settled 6/5 unit length compared to the unit length settlement of the grain-inertia fluid as measured from the nose-tip of the flowfront that has already settled to the back side of the debris. Therefore, the macroviscous fluid settles (completely stops to flow) 20% faster than the grain-inertia fluid. Due to the dispersive pressure in grain-inertia fluid, the settlement process is delayed by 20% for the grain-inertia fluid than for the macroviscous fluid. This is meaningful because particles are more agitated due to higher dispersive pressure in grain-inertia fluids than in macroviscous fluids. Once the material comes close to rest, these dispersive forces (induced by the quadratic shear rate), are still active for grain-inertia fluid but macroviscous fluid settles relatively faster because it is less dispersive. This provides a tool to approximate and estimate the final settlement time (the time at which the entire fluid body is at rest). These are mechanically important relationships concerning the settlement time and the settlement lengths between the grain-inertia and the macroviscous fluids.

Related Research Articles

Rheology is the study of the flow of matter, primarily in a fluid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.

A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo.

<span class="mw-page-title-main">Settling</span> Process by which particulates move towards the bottom of a liquid and form a sediment

Settling is the process by which particulates move towards the bottom of a liquid and form a sediment. Particles that experience a force, either due to gravity or due to centrifugal motion will tend to move in a uniform manner in the direction exerted by that force. For gravity settling, this means that the particles will tend to fall to the bottom of the vessel, forming sludge or slurry at the vessel base.

In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid for which the shear stress, τ, is given by

Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

<span class="mw-page-title-main">Thixotropy</span> Change in viscosity of a gel or fluid caused by stress

Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow over time when shaken, agitated, shear-stressed, or otherwise stressed. They then take a fixed time to return to a more viscous state. Some non-Newtonian pseudoplastic fluids show a time-dependent change in viscosity; the longer the fluid undergoes shear stress, the lower its viscosity. A thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a steep change in shear rate. Some thixotropic fluids return to a gel state almost instantly, such as ketchup, and are called pseudoplastic fluids. Others such as yogurt take much longer and can become nearly solid. Many gels and colloids are thixotropic materials, exhibiting a stable form at rest but becoming fluid when agitated. Thixotropy arises because particles or structured solutes require time to organize. An overview of thixotropy has been provided by Mewis and Wagner.

<span class="mw-page-title-main">Dilatant</span> Material in which viscosity increases with the rate of shear strain

A dilatant material is one in which viscosity increases with the rate of shear strain. Such a shear thickening fluid, also known by the initialism STF, is an example of a non-Newtonian fluid. This behaviour is usually not observed in pure materials, but can occur in suspensions.

<span class="mw-page-title-main">Electrorheological fluid</span>

Electrorheological (ER) fluids are suspensions of extremely fine non-conducting but electrically active particles in an electrically insulating fluid. The apparent viscosity of these fluids changes reversibly by an order of up to 100,000 in response to an electric field. For example, a typical ER fluid can go from the consistency of a liquid to that of a gel, and back, with response times on the order of milliseconds. The effect is sometimes called the Winslow effect after its discoverer, the American inventor Willis Winslow, who obtained a US patent on the effect in 1947 and wrote an article published in 1949.

<span class="mw-page-title-main">Rheometer</span> Scientific instrument used to measure fluid flow (rheology)

A rheometer is a laboratory device used to measure the way in which a viscous fluid flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. It measures the rheology of the fluid.

Rheometry generically refers to the experimental techniques used to determine the rheological properties of materials, that is the qualitative and quantitative relationships between stresses and strains and their derivatives. The techniques used are experimental. Rheometry investigates materials in relatively simple flows like steady shear flow, small amplitude oscillatory shear, and extensional flow.

<span class="mw-page-title-main">Shear thinning</span> Non-Newtonian fluid behavior

In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo-plastic behaviour, and is usually defined as excluding time-dependent effects, such as thixotropy.

<span class="mw-page-title-main">Debris flow</span> Geological phenomenon

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rock avalanches and other types of landslides, but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters. As a result of their high sediment concentrations and mobility, debris flows can be very destructive.

The Bagnold number (Ba) is the ratio of grain collision stresses to viscous fluid stresses in a granular flow with interstitial Newtonian fluid, first identified by Ralph Alger Bagnold.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.

<span class="mw-page-title-main">Sediment gravity flow</span> Sediment transport mechanism

A sediment gravity flow is one of several types of sediment transport mechanisms, of which most geologists recognize four principal processes. These flows are differentiated by their dominant sediment support mechanisms, which can be difficult to distinguish as flows can be in transition from one type to the next as they evolve downslope.

<span class="mw-page-title-main">Powder snow avalanche</span>

A powder snow avalanche is a type of avalanche where snow grains are largely or completely suspended and moved by air in a state of fluid turbulence. They are particle-laden gravity currents and closely related to turbidity currents, pyroclastic flows from volcanoes and dust storms in the desert. The turbulence is typically generated by the forward motion of the current along the lower boundary of the domain, the motion being in turn driven by the action of gravity on the density difference between the particle-fluid mixture and the ambient fluid. The ambient fluid is generally of similar composition to the interstitial fluid, and is water for turbidity currents and air for avalanches. These flows are non-conservative in that they may exchange particles at the lower boundary by deposition or suspension, and may exchange fluid with the ambient by entrainment or detrainment. Such flows dissipate when the turbulence can no longer hold the particles in suspension and they are deposited on the lower boundary. When the turbulence is strong enough to suspend new material from the bed or the underlying dense flow then current is said to be auto-suspending. Particle concentrations in the suspension cloud are usually sufficiently low that particle-particle interactions play a small or negligible role in maintaining the suspension. In powder snow avalanches, even at these low concentrations, the extra density of the suspended particles is large relative to that of air, so the Boussinesq approximation, where density differences are considered negligible in inertia terms, is invalid, so that the snow grains carry most of the flows momentum. This is in contrast to turbidity currents and laboratory experiments in water where the extra inertia of the particles can usually be neglected. Nonetheless, due to the extreme difficulty in estimating particle concentrations in natural flows there remains considerable uncertainty—and debate—concerning the particle loading in large submarine turbidity currents and the validity of the Boussinesq approximation.

Constant viscosity elastic liquids, also known as Boger fluids are elastic fluids with constant viscosity. This creates an effect in the fluid where it flows like a liquid, yet behaves like an elastic solid when stretched out. Most elastic fluids exhibit shear thinning, because they are solutions containing polymers. But Boger fluids are exceptions since they are highly dilute solutions, so dilute that shear thinning caused by the polymers can be ignored. Boger fluids are made primarily by adding a small amount of polymer to a Newtonian fluid with a high viscosity, a typical solution being polyacrylamide mixed with corn syrup. It is a simple compound to synthesize but important to the study of rheology because elastic effects and shear effects can be clearly distinguished in experiments using Boger fluids. Without Boger fluids, it was difficult to determine if a non-Newtonian effect was caused by elasticity, shear thinning, or both; non-Newtonian flow caused by elasticity was rarely identifiable. Since Boger fluids can have constant viscosity, an experiment can be done where the results of the flow rates of a Boger liquid and a Newtonian liquid with the same viscosity can be compared, and the difference in the flow rates would show the change caused by the elasticity of the Boger liquid.

<span class="mw-page-title-main">Time-dependent viscosity</span> Property of certain fluids to change viscosity over time

In continuum mechanics, time-dependent viscosity is a property of fluids whose viscosity changes as a function of time. The most common type of this is thixotropy, in which the viscosity of fluids under continuous shear decreases with time; the opposite is rheopecty, in which viscosity increases with time.

<span class="mw-page-title-main">Powder</span> Dry, bulk solid composed of fine, free-flowing particles

A powder is a dry, bulk solid composed of many very fine particles that may flow freely when shaken or tilted. Powders are a special sub-class of granular materials, although the terms powder and granular are sometimes used to distinguish separate classes of material. In particular, powders refer to those granular materials that have the finer grain sizes, and that therefore have a greater tendency to form clumps when flowing. Granulars refers to the coarser granular materials that do not tend to form clumps except when wet.

Biofluid dynamics may be considered as the discipline of biological engineering or biomedical engineering in which the fundamental principles of fluid dynamics are used to explain the mechanisms of biological flows and their interrelationships with physiological processes, in health and in diseases/disorder. It can be considered as the conjuncture of mechanical engineering and biological engineering. It spans from cells to organs, covering diverse aspects of the functionality of systemic physiology, including cardiovascular, respiratory, reproductive, urinary, musculoskeletal and neurological systems etc. Biofluid dynamics and its simulations in computational fluid dynamics (CFD) apply to both internal as well as external flows. Internal flows such as cardiovascular blood flow and respiratory airflow, and external flows such as flying and aquatic locomotion. Biological fluid Dynamics involves the study of the motion of biological fluids. It can be either circulatory system or respiratory systems. Understanding the circulatory system is one of the major areas of research. The respiratory system is very closely linked to the circulatory system and is very complex to study and understand. The study of Biofluid Dynamics is also directed towards finding solutions to some of the human body related diseases and disorders. The usefulness of the subject can also be understood by seeing the use of Biofluid Dynamics in the areas of physiology in order to explain how living things work and about their motions, in developing an understanding of the origins and development of various diseases related to human body and diagnosing them, in finding the cure for the diseases related to cardiovascular and pulmonary systems.

References

  1. Bagnold, R.A. (1954). "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear". Proceedings of the Royal Society A . 225 (1160): 49–63. Bibcode:1954RSPSA.225...49B. doi:10.1098/rspa.1954.0186. S2CID   98030586.
  2. Campbell, S.C. (1990). "Rapid granular flows". Annu. Rev. Fluid Mech. 22: 57–90. Bibcode:1990AnRFM..22...57C. doi:10.1146/annurev.fl.22.010190.000421.
  3. Silbert, E.; Ertas, D.; Grest, G. S.; Halsey, T. C.; Levine, D.; Plimpton, S. J. (2001). "Granular flow down an inclined plane: Bagnold scaling and rheology". Phys. Rev. E . 64 (5): 051302. arXiv: cond-mat/0105071 . Bibcode:2001PhRvE..64e1302S. doi:10.1103/physreve.64.051302. PMID   11735913. S2CID   32482459.
  4. Takahashi, T. (2007). Debris Flow: Mechanics, Prediction and Countermeasures. Taylor and Francis, Leiden.
  5. Pudasaini, Shiva P. (2011). "Some exact solutions for debris and avalanche flows". Physics of Fluids. 23 (4): 043301–043301–16. Bibcode:2011PhFl...23d3301P. doi:10.1063/1.3570532.