Ballistic missile flight phases

Last updated

A ballistic missile goes through several distinct phases of flight that are common to almost all such designs. They are, in order, the boost phase when the main boost rocket or upper stages are firing, the post-boost phase when any last-minute changes to the trajectory are made by the upper stage or warhead bus and the warheads and any decoys are released, the midcourse which represents most of the flight when the objects coast, and the terminal phase as the warhead approaches its target and, for longer-ranged missiles, begins to reenter the atmosphere.

Contents

These phases are particularly important when discussing ballistic missile defense concepts. Each phase has a different level of difficulty in performing an interception, as well as a different outcome in terms of its effect on the attack as a whole. For instance, defenses that take place during the terminal phase are often the simplest to build in technical terms as they require only short-range missiles and radars. However, terminal defenses also face the most difficult targets, the multiple warheads and decoys released during the post-boost phase. In contrast, boost-phase defenses are difficult to build because they have to be located close to the target, often in space, but every success destroys all of the warheads and decoys.

Boost phase

The boost phase is the portion of the flight of a ballistic missile or space vehicle during which the booster and sustainer engines operate until it reaches peak velocity. This phase can take 3 to 4 minutes for a solid rocket (shorter for a liquid-propellant rocket), the altitude at the end of this phase is 150–200 km, and the typical burn-out speed is 7 km/s. [1]

Boost-phase intercept is a type of missile defense technology that would be designed to disable enemy missiles while they are still in the boost phase. Such defenses have the advantage of being able to easily track their targets through the infrared signature of the rocket exhaust, and that boosters are generally much less robust than the warheads or bus. [1] Destroying the booster also destroys all of the warheads and decoys, and even simply pushing it off its trajectory can make it impossible for its payload to reach its destination.

Boost-phase intercepts are also generally the most difficult to arrange, as they require the interceptor to be within attack range within the few minutes while the missile engines are firing. Given some sort of positive control over the launch, this means there is only a short time for the weapons to reach their targets after the launch command is given. This requires very high-speed weapons located close to the enemy launchers, or weapons like particle beams or lasers that operate at speeds close to the speed of light.

Project Excalibur was a major boost-phase weapon design of the Strategic Defense Initiative. This used an x-ray laser stationed on a submarine off the coast of the Soviet Union that would "pop-up" a weapon when a launch was detected. Each missile that Excalibur destroyed would eliminate hundreds of targets that would have to be dealt with in later stages. Brilliant Pebbles was another boost-phase system that consisted of tens of thousands of heat seeking missiles in orbit, so that at least thousands would be over the Soviet Union at all times. Such systems proved to be well beyond the state of the art and development was eventually cancelled.

Post-boost phase

The post-boost phase is the portion of the flight immediately after the boost phase. During this phase, the payload is released. In the case of a modern ICBM or SLBM, it is during this period that the warhead bus aims and releases the individual warheads on their separate trajectories, and ejects any decoys.

Interceptions that take place early in the post-boost phase have similar advantages to the boost phase, in that a single attack may destroy all of the warheads and decoys. The value of an attack during this phase diminishes as it continues, as the bus continues to release its payload. It has the added difficulty of having to use much more sensitive tracking systems as the rocket engine on the bus is far less powerful and is likely very "cold" in relation to the booster.

Midcourse

The midcourse phase represents the majority of the time of flight of a ballistic missile, from minutes to the better part of an hour depending on the range of the missile. During this phase the payload follows a ballistic trajectory, with warheads, decoys and radar reflectors mixed together in an extended formation known as the target cloud. In the case of ICBMs, the cloud may be as large as 1 mile (1.6 km) across and 10 miles (16 km) long. [2]

While the midcourse provides the longest time to perform an interception, it is also the most difficult time to do so due to the presence of the extended cloud. Some weapons, like the x-ray burst from a nuclear warhead, can damage or destroy a warhead within an extended range. However, the warhead can be "hardened" against such attacks, reducing this range to hundreds of yards. Without some way to discriminate the warheads, dozens of interceptors may be required to ensure destroying the warhead hiding within the cloud.

Picking out the warheads in the cloud remains an unsolved problem by either radar or optical means. A number of suggestions have been made that generally involve placing some sort of mass, like a gas or dust, in the path of the cloud, and then watching the deceleration of the masses. The much denser warhead will slow less than lighter decoys, allowing it to be discriminated.

Terminal

The terminal phase of a missile trajectory begins when the payload begins to reenter the atmosphere. The precise definition varies, but below about 60 kilometres (37 mi) the atmosphere begins to thicken to the point where drag begins to have a noticeable effect on the objects in the cloud. This region is sometimes referred to as the deep terminal phase. [3]

Interceptions during the terminal phase are among the simplest, both technically and in terms of tracking. Once the objects in the cloud begin to enter the lower atmosphere, the lighter decoys and chaff begin to slow down more rapidly than the much denser warheads. Examining the deceleration of the cloud will reveal the warheads as the objects with the least deceleration. This atmospheric decluttering becomes more pronounced as the objects continue to fall, which makes it advantageous to wait until the last possible moment before attacking. This was the premise behind the Nike-X system, where interceptions took place only a few seconds before the warheads would explode.

The major disadvantage of terminal phase attacks is that the decluttering takes time, which is time you no longer have to launch an interceptor. Against a large attack with many warheads, there may be little time to arrange all of the interceptions. More importantly, waiting until the last moment necessarily means the interception takes place at shorter range (unless using a weapon that travels at the speed of light) which means protecting a large area may require a very large number of interceptor bases spread over that area.

Related Research Articles

Anti-ballistic missile Surface-to-air missile designed to counter ballistic missiles

An anti-ballistic missile (ABM) is a surface-to-air missile designed to counter ballistic missiles. Ballistic missiles are used to deliver nuclear, chemical, biological, or conventional warheads in a ballistic flight trajectory. The term "anti-ballistic missile" is a generic term conveying a system designed to intercept and destroy any type of ballistic threat; however, it is commonly used for systems specifically designed to counter intercontinental ballistic missiles (ICBMs).

Intercontinental ballistic missile Ballistic missile with a range of more than 5,000 kilometres

An intercontinental ballistic missile (ICBM) is a missile with a minimum range of 5,000 kilometres (3,100 mi) primarily designed for nuclear weapons delivery. Similarly, conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. Russia, the United States, China, France, India, the United Kingdom, and North Korea are the only countries that have operational ICBMs.

Missile Self-propelled guided weapon system

In military terminology, a missile is a guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets. Missiles have five system components: targeting, guidance system, flight system, engine and warhead. Missiles come in types adapted for different purposes: surface-to-surface and air-to-surface missiles, surface-to-air missiles, air-to-air missiles, and anti-satellite weapons.

Ballistic missile Missile that follows a sub-orbital ballistic flightpath

A ballistic missile uses projectile motion to deliver warheads on a target. These weapons are guided only during relatively brief periods—most of the flight is unpowered. Short-range ballistic missiles stay within the Earth's atmosphere, while intercontinental ballistic missiles (ICBMs) are launched on a sub-orbital flight.

Multiple independently targetable reentry vehicle Ballistic missile payload containing multiple warheads which are independently targetable

A multiple independently targetable reentry vehicle (MIRV) is an exoatmospheric ballistic missile payload containing several warheads, each capable of being aimed to hit a different target. The concept is almost invariably associated with intercontinental ballistic missiles carrying thermonuclear warheads, even if not strictly being limited to them. By contrast, a unitary warhead is a single warhead on a single missile. An intermediate case is the multiple reentry vehicle (MRV) missile which carries several warheads which are dispersed but not individually aimed. Only the United States, the United Kingdom, France, Russia and China are currently confirmed to have deployed MIRV missile systems. Pakistan and India are developing MIRV missile systems. Israel is suspected to possess or be in the process of developing MIRVs.

Aegis Ballistic Missile Defense System United States Navy and Missile Defense Agency anti-ballistic missile program

The Aegis Ballistic Missile Defense System, also known as Sea-Based Midcourse, is a United States Department of Defense Missile Defense Agency program developed to provide missile defense against short to intermediate-range ballistic missiles. The program is part of the United States national missile defense strategy and European NATO missile defence system.

United States national missile defense Nationwide missile defense program of the United States

National missile defense (NMD) is a generic term for a type of missile defense intended to shield an entire country against incoming missiles, such as intercontinental ballistic missile (ICBMs) or other ballistic missiles.

Ground-Based Midcourse Defense United States anti-ballistic missile defense for intercepting warheads in space

Ground-Based Midcourse Defense (GMD) is the United States' anti-ballistic missile system for intercepting incoming warheads in space, during the midcourse phase of ballistic trajectory flight. It is a major component of the American missile defense strategy to counter ballistic missiles, including intercontinental ballistic missiles (ICBMs) carrying nuclear, chemical, biological or conventional warheads. The system is deployed in military bases in the states of Alaska and California; in 2018 comprising 44 interceptors and spanning 15 time zones with sensors on land, at sea, and in orbit. In 2019, a missile defense review requested that 20 additional ground-based interceptors be based in Alaska.

Missile Defense Agency Agency of the US Defense department

The Missile Defense Agency (MDA) is the section of the United States government's Department of Defense responsible for developing a layered defense against ballistic missiles. It had its origins in the Strategic Defense Initiative (SDI) which was established in 1983 by Ronald Reagan and which was headed by Lt. General James Alan Abrahamson. Under the Strategic Defense Initiative's Innovative Sciences and Technology Office headed by physicist and engineer Dr. James Ionson, the investment was predominantly made in basic research at national laboratories, universities, and in industry. These programs have continued to be key sources of funding for top research scientists in the fields of high-energy physics, advanced materials, supercomputing/computation, and many other critical science and engineering disciplines—funding which indirectly supports other research work by top scientists, and which was most politically viable to fund within the Military budget of the United States environment. It was renamed the Ballistic Missile Defense Organization in 1993, and then renamed the Missile Defense Agency in 2002. The current director is U.S. Navy Vice Admiral Jon A. Hill.

Missile defense System that destroys attacking missiles

Missile defense is a system, weapon, or technology involved in the detection, tracking, interception, and destruction of attacking missiles. Conceived as a defense against nuclear-armed intercontinental ballistic missiles (ICBMs), its application has broadened to include shorter-ranged non-nuclear tactical and theater missiles.

The LIM-49 Spartan was a United States Army anti-ballistic missile, designed to intercept attacking nuclear warheads from Intercontinental ballistic missiles at long range and while still outside the atmosphere. For actual deployment, a five-megaton thermonuclear warhead was planned to destroy the incoming ICBM warheads. It was part of the Safeguard Program.

Anti-ballistic missile defense countermeasures are tactical or strategic actions taken by an attacker to overwhelm, destroy, or evade anti-ballistic missile defenses.

A penetration aid is a device or tactic used to increase an intercontinental ballistic missile (ICBM) warhead's chances of penetrating a target's defenses.

The Indian Ballistic Missile Defence Program is an initiative to develop and deploy a multi-layered ballistic missile defence system to protect India from ballistic missile attacks. Phase 1 has been successfully tested and completed and deployment awaits final official permission. Phase 2 is under development.

RIM-161 Standard Missile 3 Kinetic surface-to-air missile (Aegis Ballistic Missile Defense System)

The RIM-161 Standard Missile 3 (SM-3) is a ship-based surface-to-air missile system used by the United States Navy to intercept short- and intermediate-range ballistic missiles as a part of Aegis Ballistic Missile Defense System. Although primarily designed as an anti-ballistic missile, the SM-3 has also been employed in an anti-satellite capacity against a satellite at the lower end of low Earth orbit. The SM-3 is primarily used and tested by the United States Navy and also operated by the Japan Maritime Self-Defense Force.

RIM-174 Standard ERAM US surface-to-air missile

The RIM-174 Standard Extended Range Active Missile (ERAM), or Standard Missile 6 (SM-6) is a missile in current production for the United States Navy. It was designed for extended range anti-air warfare (ER-AAW) purposes providing capability against fixed and rotary-wing aircraft, unmanned aerial vehicles, anti-ship cruise missiles in flight, both over sea and land, and terminal ballistic missile defense. It can also be used as a high speed anti-ship missile. The missile uses the airframe of the earlier SM-2ER Block IV (RIM-156A) missile, adding the active radar homing seeker from the AIM-120C AMRAAM in place of the semi-active seeker of the previous design. This will improve the capability of the Standard missile against highly agile targets, and targets beyond the effective range of the launching vessels' target illumination radars. Initial operating capability was planned for 2013 and was achieved on 27 November 2013. The SM-6 is not meant to replace the SM-2 series of missiles, but will serve alongside and provide extended range and increased firepower. It was approved for export in January 2017.

Ground-Based Interceptor Anti-ballistic missile

The Ground-Based Interceptor (GBI) is the anti-ballistic missile component of the United States' Ground-Based Midcourse Defense (GMD) system.

Boost-glide Glide and reentry mechanisms that use aerodynamic lift in the upper atmosphere

Boost-glide trajectories are a class of spacecraft guidance and reentry trajectories that extend the range of suborbital spaceplanes and reentry vehicles by employing aerodynamic lift in the high upper atmosphere. In most examples, boost-glide roughly doubles the range over the purely ballistic trajectory. In others, a series of skips allows range to be further extended, and leads to the alternate terms skip-glide and skip reentry.

Project SAINT US anti-Soviet spacecraft system

Project SAINT was a project undertaken by the United States during the Cold War to develop a means of intercepting, inspecting and destroying Soviet spacecraft. Many details relating to the project are still classified. The order to launch the SAINT could only be given by the NORAD commander-in-chief, and presumably, anyone higher ranked than them.

Violet Friend

Violet Friend was the Ministry of Supply rainbow code for an anti-ballistic missile (ABM) system developed in the United Kingdom. The project began in 1954 with study contracts for an early warning radar system, which was followed by the February 1955 release of Air Staff Target 1135 (AST.1135) calling for a system to counter intermediate range ballistic missiles (IRBMs) being fired at the UK from eastern Europe. AST.1135 required the system to be able to attack six targets at once and be ready for initial deployment in 1963.

References

  1. 1 2 "Boost Phase". Global Security.
  2. "Midcourse Phase". Global Security.
  3. "Terminal Phase". Global Security.

Bibliography