Balloonist theory

Last updated

Balloonist theory was a theory in early neuroscience that attempted to explain muscle movement by asserting that muscles contract by inflating with air or fluid. The Greek physician Galen believed that muscles contracted due to a fluid flowing into them, and for 1500 years afterward, it was believed that nerves were hollow and that they carried fluid. [1] René Descartes, who was interested in hydraulics and used fluid pressure to explain various aspects of physiology such as the reflex arc, proposed that "animal spirits" flowed into muscle and were responsible for their contraction. [2] In the model, which Descartes used to explain reflexes, the spirits would flow from the ventricles of the brain, through the nerves, and to the muscles to animate the latter. [3]

Contents

In 1667, Thomas Willis proposed that muscles may expand by the reaction of animal spirits with vital spirits. He hypothesized that this reaction would produce air in a manner similar to the reaction that causes an explosion, causing muscles to swell and produce movement.

Physiological refutations of the theory

Swammerdam's illustration of a nerve-muscle preparation. He placed a frog thigh muscle in a glass syringe with a nerve protruding from a hole in the side of the container. Irritating the nerve caused the muscle to contract, but the level of the water, and thus the volume of the muscle, did not increase. Swammerdam frog thigh.PNG
Swammerdam's illustration of a nerve-muscle preparation. He placed a frog thigh muscle in a glass syringe with a nerve protruding from a hole in the side of the container. Irritating the nerve caused the muscle to contract, but the level of the water, and thus the volume of the muscle, did not increase.

In 1667, Jan Swammerdam, a Dutch anatomist famous for working with insects, struck the first important blow against the balloonist theory. Swammerdam, who was the first to experiment on nerve-muscle preparations, showed that muscles do not increase in size when they contract (and he supposed if a substance such as animal spirits flowed into muscles, their volume should increase when they contract). Swammerdam placed severed frog thigh muscle in an airtight syringe with a small amount of water in the tip. [3] He could thus determine whether there was a change the volume of the muscle when it contracted by observing a change in the level of the water (image at right). [3] When Swammerdam caused the muscle to contract by irritating the nerve, the water level did not rise but rather was lowered by a minute amount; this showed that no air or fluid could be flowing into the muscle. [3] Swammerdam did not believe the results of his own experiment, suggesting that they were the result of artifact. [3] However, he concluded in his book The Book of Nature II that "motion or irritation of the nerve alone is necessary to produce muscular motion". [3] This idea was an important step toward the current understanding of how nerves actually cause muscle contraction. [3]

Balloonist theory took a second hit from Francis Glisson who performed an experiment in which a man flexed a muscle under water. The water level did not go up (in fact it went down slightly), further supporting the conclusion that no air or fluid could be entering the muscle.

Giovanni Alfonso Borelli performed an experiment to test the idea that muscle is inflated by air. He slit the muscle of an animal under water and watched to see whether bubbles of air would rise to the surface. Since no bubbles were seen to rise, this experiment helped to refute the balloonist theory.

The invention of the microscope allowed preparations of nerves to be viewed at high magnification, showing that they are not hollow.

In 1791, Luigi Galvani learned that frogs' muscles could be made to move by the application of electricity. This finding provided a basis for the current understanding that electrical energy (carried by ions), and not air or fluid, is the impetus behind muscle movement.

See also

Related Research Articles

Nerve Enclosed, cable-like bundle of axons in the peripheral nervous system

A nerve is an enclosed, cable-like bundle of fibers in the peripheral nervous system.

Nervous system Highly complex part of an animal that coordinates actions and sensory information by transmitting signals between different parts of the body

In biology, the nervous system is a highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

Luigi Galvani Italian physician, physicist, and philosopher

Luigi Galvani was an Italian physician, physicist, biologist and philosopher, who discovered animal electricity. He is recognized as the pioneer of bioelectromagnetics. In 1780, he and his wife Lucia discovered that the muscles of dead frogs' legs twitched when struck by an electrical spark. This was one of the first forays into the study of bioelectricity, a field that studies the electrical patterns and signals from tissues such as the nerves and muscles.

Andrew Huxley

Sir Andrew Fielding Huxley was an English physiologist and biophysicist. He was born into the prominent Huxley family. After graduating from Westminster School in Central London, from where he won a scholarship to Trinity College, Cambridge, he joined Alan Lloyd Hodgkin to study nerve impulses. Their eventual discovery of the basis for propagation of nerve impulses earned them the Nobel Prize in Physiology or Medicine in 1963. They made their discovery from the giant axon of the Atlantic squid. Soon after the outbreak of the Second World War, Huxley was recruited by the British Anti-Aircraft Command and later transferred to the Admiralty. After the war he resumed research at The University of Cambridge, where he developed interference microscopy that would be suitable for studying muscle fibres.

Motor neuron Nerve cell sending impulse to muscle

A motor neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuron – upper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

Jan Swammerdam

Jan Swammerdam was a Dutch biologist and microscopist. His work on insects demonstrated that the various phases during the life of an insect—egg, larva, pupa, and adult—are different forms of the same animal. As part of his anatomical research, he carried out experiments on muscle contraction. In 1658, he was the first to observe and describe red blood cells. He was one of the first people to use the microscope in dissections, and his techniques remained useful for hundreds of years.

Motor nerve

A motor nerve is a nerve located in the central nervous system (CNS), usually the spinal cord, that sends motor signals from the CNS to the muscles of the body. This is different from the motor neuron, which includes a cell body and branching of dendrites, while the nerve is made up of a bundle of axons. Motor nerves act as efferent nerves which carry information out from the CNS to muscles, as opposed to afferent nerves, which send signals from sensory receptors in the periphery to the CNS. Efferent nerves can also connect to glands or other organs/issues instead of muscles. In addition, there are nerves that serve as both sensory and motor nerves called mixed nerves.

Weakness is a symptom of a number of different conditions. The causes are many and can be divided into conditions that have true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular junction disorders, such as myasthenia gravis.

The Treatise on Man is an unfinished treatise by René Descartes written in the 1630s and published posthumously, firstly in 1662 in Latin, then in 1664 in French by Claude Clerselier. The 1664 edition is accompanied by a short text, The Description of the Human Body and All Its Functions, also known as the Treatise on the Formation of the Foetus, the remarks of Louis La Forge and the translated preface from the Latin edition by Florent Schuyl.

Ciliary body Part of the eye

The ciliary body is a part of the eye that includes the ciliary muscle, which controls the shape of the lens, and the ciliary epithelium, which produces the aqueous humor. The aqueous humor is produced in the non-pigmented portion of the ciliary body. The ciliary body is part of the uvea, the layer of tissue that delivers oxygen and nutrients to the eye tissues. The ciliary body joins the ora serrata of the choroid to the root of the iris.

Muscle contraction Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding a heavy book or a dumbbell at the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

Francis Glisson

Francis Glisson was a British physician, anatomist, and writer on medical subjects. He did important work on the anatomy of the liver, and he wrote an early pediatric text on rickets. An experiment he performed helped debunk the balloonist theory of muscle contraction by showing that when a muscle contracted under water, the water level did not rise, and thus no air or fluid could be entering the muscle.

Motor control is the regulation of movement in organisms that possess a nervous system. Motor control includes reflexes as well as directed movement.

Muscle weakness is a lack of muscle strength. Its causes are many and can be divided into conditions that have either true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular junction disorders, such as myasthenia gravis. Muscle weakness can also be caused by low levels of potassium and other electrolytes within muscle cells. It can be temporary or long-lasting. The term myasthenia is from my- from Greek μυο meaning "muscle" + -asthenia ἀσθένεια meaning "weakness".

From the ancient Egyptian mummifications to 18th-century scientific research on "globules" and neurons, there is evidence of neuroscience practice throughout the early periods of history. The early civilizations lacked adequate means to obtain knowledge about the human brain. Their assumptions about the inner workings of the mind, therefore, were not accurate. Early views on the function of the brain regarded it to be a form of "cranial stuffing" of sorts. In ancient Egypt, from the late Middle Kingdom onwards, in preparation for mummification, the brain was regularly removed, for it was the heart that was assumed to be the seat of intelligence. According to Herodotus, during the first step of mummification: "The most perfect practice is to extract as much of the brain as possible with an iron hook, and what the hook cannot reach is mixed with drugs." Over the next five thousand years, this view came to be reversed; the brain is now known to be the seat of intelligence, although colloquial variations of the former remain as in "memorizing something by heart".

Robert Whytt

Dr Robert Whytt (1714–1766) was a Scottish physician. His work, on unconscious reflexes, tubercular meningitis, urinary bladder stones, and hysteria, is remembered now most for his book on diseases of the nervous system. He served as President of the Royal College of Physicians of Edinburgh.

Acute muscle soreness (AMS) is the pain felt in muscles during and immediately, up to 24 hours, after strenuous physical exercise. The pain appears within a minute of contracting the muscle and it will disappear within two or three minutes or up to several hours after relaxing it.

Iatrophysics

Iatrophysics or iatromechanics is the medical application of physics. It provides an explanation for medical practices with mechanical principles. It was a school of medicine in the seventeenth century which attempted to explain physiological phenomena in mechanical terms. Believers of iatromechanics thought that physiological phenomena of the human body followed the laws of physics. It was related to iatrochemistry in studying the human body in a systematic manner based on observations from the natural world though it had more emphasis on mathematical models rather than chemical processes.

Axon reflex

The axon reflex is the response stimulated by peripheral nerves of the body that travels away from the nerve cell body and branches to stimulate target organs. Reflexes are single reactions that respond to a stimulus making up the building blocks of the overall signaling in the body's nervous system. Neurons are the excitable cells that process and transmit these reflex signals through their axons, dendrites, and cell bodies. Axons directly facilitate intercellular communication projecting from the neuronal cell body to other neurons, local muscle tissue, glands and arterioles. In the axon reflex, signaling starts in the middle of the axon at the stimulation site and transmits signals directly to the effector organ skipping both an integration center and a chemical synapse present in the spinal cord reflex. The impulse is limited to a single bifurcated axon, or a neuron whose axon branches into two divisions and does not cause a general response to surrounding tissue.

Neuromechanics

As originally proposed by Enoka, neuromechanics is a field of study that combines concepts from biomechanics and neurophysiology to study human movement. Neuromechanics examines the combined roles of the skeletal, muscular, and nervous systems and how they interact to produce the motion required to complete a motor task.

References

  1. Pearn J (2002). "A curious experiment: the paradigm switch from observation and speculation to experimentation, in the understanding of neuromuscular function and disease". Neuromuscular Disorders. 12 (6): 600–7. doi:10.1016/s0960-8966(01)00310-8. PMID   12117487.
  2. Columbia University. History of Neuroscience. Retrieved on January 25, 2007.
  3. 1 2 3 4 5 6 7 Cobb M (2002). "Timeline: Exorcizing the animal spirits: Jan Swammerdam on nerve function". Nature Reviews Neuroscience. 3 (5): 395–400. doi:10.1038/nrn806. PMID   11988778.