Barocaloric material

Last updated

Barocaloric materials are characterized by strong, reversible thermic responses to changes in pressure. Many involve solid-to-solid phase changes from disordered to ordered and rigid under increased pressure, releasing heat. Barocaloric solids undergo solid-to-solid phase change. [1] One barocaloric material processes heat without a phase change: natural rubber. [2]

Contents

Input energy

Barocaloric effects can be achieved at pressures above 200 MPa for intermetallics or about 100 MPa in plastic crystals. However, NH4I changes phase at pressures of 80 MPa. [3] The hybrid organic–inorganic layered perovskite (CH3–(CH2)n−1–NH3)2MnCl4 (n = 9,10), shows reversible barocaloric entropy change of ΔSr ~ 218, 230 J kg−1 K−1 at 0.08 GPa at 294-311.5 K (transition temperature). [4]

Barocaloric materials are one of several classes of materials that undergo caloric phase transitions. The others are magnetocaloric, electrocaloric, and elastocaloric. Magnetocaloric effects typically require field strengths larger than 2 T, while electrocaloric materials require field strengths in the kV to MV/m range. Elastocaloric materials may require force levels as large as 700 MPa.

Potential applications

Barocaloric materials have potential use as refrigerants in cooling systems instead of gases such as hydrofluorocarbons. cycles, the pressure then drives a solid-to-solid phase change. [5] A prototype air conditioner was made from a metal tube filled with a metal-halide perovskite (the refrigerant) and water or oil (heat/pressure transport material). A piston pressurizes the liquid. [1] [6]

Another project used NH4I as the refrigerant. It achieved reversible entropy changes of ~71 J K−1 kg−1 at ambient temperature. The phase transition temperature is a function of pressure, varying at a rate of ~0.79 K MPa−1. The accompanying saturation driving pressure is ~40 MPa, a barocaloric strength of ~1.78 J K−1 kg−1 MPa−1, and a temperature span of ~41 K under 80 MPa. Neutron scattering characterizations of crystal structures/atomic dynamics show that reorientation-vibration coupling is responsible for the pressure sensitivity. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Melting</span> Material phase change

Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.

<span class="mw-page-title-main">Melting point</span> Temperature at which a solid turns liquid

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

<span class="mw-page-title-main">Phase transition</span> Physical process of transition between basic states of matter

In physics, chemistry, and other related fields like biology, a phase transition is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure. This can be a discontinuous change; for example, a liquid may become gas upon heating to its boiling point, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductivity is superconductivity in materials with a critical temperature above 77 K, the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient, and therefore require cooling. The first breakthrough of high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around 35.1 K, this new type of superconductor was readily modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature 93 K. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often chosen to be the standard temperature and pressure.

<span class="mw-page-title-main">Perovskite (structure)</span> Type of crystal structure

A perovskite is any material of formula ABX3 with a crystal structure similar to that of the mineral perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). 'A' and 'B' are two positively charged ions (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations. The 'A' atoms are generally larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. Additional perovskite forms may exist where both/either the A and B sites have a configuration of A1x-1A2x and/or B1y-1B2y and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.

<span class="mw-page-title-main">Magnetic refrigeration</span> Phenomenon in which a suitable material can be cooled by a changing magnetic field

Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators.

<span class="mw-page-title-main">Adsorption</span> Phenomenon of surface adhesion

Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid is dissolved by or permeates a liquid or solid. While adsorption does often precede absorption, which involves the transfer of the absorbate into the volume of the absorbent material, alternatively, adsorption is distinctly a surface phenomenon, wherein the adsorbate does not penetrate through the material surface and into the bulk of the adsorbent. The term sorption encompasses both adsorption and absorption, and desorption is the reverse of sorption.

<span class="mw-page-title-main">Strontium titanate</span> Chemical compound

Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric. It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics.

Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur in portions of the lowermost few hundred km of Earth's mantle.

The electrocaloric effect is a phenomenon in which a material shows a reversible temperature change under an applied electric field.

<span class="mw-page-title-main">Protonic ceramic fuel cell</span>

A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen on the other side of the ceramic membrane during a reaction with oxygen. The reaction of many proposed fuels in PCFCs produce electricity and heat, the latter keeping the device at a suitable temperature. Efficient proton conductivity through most discovered ceramic electrolyte materials require elevated operational temperatures around 400-700 degrees Celsius, however intermediate temperature (200-400 degrees Celsius) ceramic fuel cells and lower temperature alternative are an active area of research. In addition to hydrogen gas, the ability to operate at intermediate and high temperatures enables the use of a variety of liquid hydrogen carrier fuels, including: ammonia, and methane. The technology shares the thermal and kinetic advantages of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton-exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel reactant products and fuel impurities at the anode. Common chemical compositions of the ceramic membranes are barium zirconate (BaZrO3), barium cerate (BaCeO3), caesium dihydrogen phosphate (CsH2PO4), and complex solid solutions of those materials with other ceramic oxides. The acidic oxide ceramics are sometimes broken into their own class of protonic ceramic fuel cells termed "solid acid fuel cells".

<span class="mw-page-title-main">Solid oxide electrolyzer cell</span> Type of fuel cell

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">Ruddlesden-Popper phase</span> Type of crystal structure

Ruddlesden-Popper (RP) phases are a type of perovskite structure that consists of two-dimensional perovskite-like slabs interleaved with cations. The general formula of an RP phase is An+1BnX3n+1, where A and B are cations, X is an anion, and n is the number of octahedral layers in the perovskite-like stack. Generally, it has a phase structure that results from the intergrowth of perovskite-type and NaCl-type structures.

Methods of oxygen storage for subsequent use span many approaches, including high pressures in oxygen tanks, cryogenics, oxygen-rich compounds and reaction mixtures, and chemical compounds that reversibly release oxygen upon heating or pressure change. O2 is the second most important industrial gas.

<span class="mw-page-title-main">Solid nitrogen</span> Solid form of the 7th element

Solid nitrogen is a number of solid forms of the element nitrogen, first observed in 1884. Solid nitrogen is mainly the subject of academic research, but low-temperature, low-pressure solid nitrogen is a substantial component of bodies in the outer Solar System and high-temperature, high-pressure solid nitrogen is a powerful explosive, with higher energy density than any other non-nuclear material.

<span class="mw-page-title-main">Methylammonium lead halide</span>

Methylammonium lead halides (MALHs) are solid compounds with perovskite structure and a chemical formula of [CH3NH3]+Pb2+(X)3, where X = Cl, Br or I. They have potential applications in solar cells, lasers, light-emitting diodes, photodetectors, radiation detectors, scintillator, magneto-optical data storage and hydrogen production.

<span class="mw-page-title-main">High entropy oxide</span> Complex oxide molecules that contain five or more metal ions

High-entropy oxides (HEOs) are complex oxides that contain five or more principal metal cations and have a single-phase crystal structure. The first HEO, (MgNiCuCoZn)0.2O in a rock salt structure, was reported in 2015 by Rost et al. HEOs have been successfully synthesized in many structures, including fluorites, perovskites, and spinels. HEOs are currently being investigated for applications as functional materials.

Elastocaloric materials are a class of advanced materials. These materials show a big change in temperature when mechanical stress is applied and then removed.

References

  1. 1 2 Koop, Fermin (2022-08-23). "Scientists develop AC that uses solid refrigerants and doesn't hurt the environment". ZME Science. Retrieved 2022-08-23.
  2. Miliante, Caio M.; Christmann, Augusto M.; Usuda, Erik O.; Imamura, William; Paixão, Lucas S.; Carvalho, Alexandre M. G.; Muniz, André R. (2020-04-14). "Unveiling the Origin of the Giant Barocaloric Effect in Natural Rubber". Macromolecules. 53 (7): 2606–2615. Bibcode:2020MaMol..53.2606M. doi:10.1021/acs.macromol.0c00051. ISSN   0024-9297. S2CID   216439124.
  3. 1 2 Ren, Qingyong; Qi, Ji; Yu, Dehong; Zhang, Zhe; Song, Ruiqi; Song, Wenli; Yuan, Bao; Wang, Tianhao; Ren, Weijun; Zhang, Zhidong; Tong, Xin; Li, Bing (2022-04-28). "Ultrasensitive barocaloric material for room-temperature solid-state refrigeration". Nature Communications. 13 (1): 2293. arXiv: 2110.11563 . Bibcode:2022NatCo..13.2293R. doi:10.1038/s41467-022-29997-9. ISSN   2041-1723. PMC   9051211 . PMID   35484158.
  4. Gao, Yihong; Liu, Hongxiong; Hu, Fengxia; Song, Hongyan; Zhang, Hao; Hao, Jiazheng; Liu, Xingzheng; Yu, Zibing; Shen, Feiran; Wang, Yangxin; Zhou, Houbo; Wang, Bingjie; Tian, Zhengying; Lin, Yuan; Zhang, Cheng (2022-04-15). "Reversible colossal barocaloric effect dominated by disordering of organic chains in (CH3–(CH2)n−1–NH3)2MnCl4 single crystals". NPG Asia Materials. 14 (1): 34. Bibcode:2022npjAM..14...34G. doi: 10.1038/s41427-022-00378-4 . ISSN   1884-4057. S2CID   248158094.
  5. Oliveira, N. A. de (2011-03-11). "Barocaloric effect and the pressure induced solid state refrigerator". Journal of Applied Physics. 109 (5): 053515–053515–3. Bibcode:2011JAP...109e3515D. doi:10.1063/1.3556740. ISSN   0021-8979.
  6. Seo, Jinyoung; McGillicuddy, Ryan D.; Slavney, Adam H.; Zhang, Selena; Ukani, Rahil; Yakovenko, Andrey A.; Zheng, Shao-Liang; Mason, Jarad A. (2022-05-09). "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites". Nature Communications. 13 (1): 2536. Bibcode:2022NatCo..13.2536S. doi:10.1038/s41467-022-29800-9. ISSN   2041-1723. PMC   9085852 . PMID   35534457.