Bartonegtaviriform

Last updated
Bartonegtaviriform
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Family: Bartogtaviriformidae
Genus:Bartonegtaviriform
Species
  • Bartonegtaviriform andersoni
Synonyms

Bartonegtaviriform andersoni

  • Bartonella gene transfer agent
  • BaGTA

Bartonegtaviriform is a genus of viruses in the family Bartogtaviriformidae. It includes one species: Bartonegtaviriform andersoni, which is a Gene transfer agent (BaGTA). [1]

Contents

Name

The family name, Bartogtaviriformidae, is a portmanteau of Barto, from "host" Bartonella , gta from gene transfer agent and viriformidae, the fact that it is a viriform. [2]

The genus name, Bartonegtaviriform, is a combination of Bartone, from "host" Bartonella , gta from gene transfer agent and viriform, the fact that it is a viriform. [2]

The species name, andersoni is named after GTA researcher Burt Anderson, who first discovered BaGTA particles. [2]

Gene transfer agents

GTAs can be considered as a form of “domesticated” prophage—that is, ancestrally derived from a bacteriophage genome, but altered by the host to confer an adaptive benefit—and thus represent one of many phage-derived adaptive functions observed in bacterial genomes. [3]

Phylogeny

Genomic sequence analysis revealed that all bacteria of the genus Bartonella are characterized by the presence of a Bartonella-specific GTA (BaGTA), which shares no homologies to previously described GTA systems. BaGTA is encoded upstream from an origin of run-off replication (ROR), another conserved feature of Bartonella genomes that has been suggested to be linked to BaGTA activity. Phylogenetic analyses identified BaGTA as a key innovation associated with the adaptive radiation that characterizes these zoonotic bacterial pathogens. Although BaGTA is not directly linked to Bartonella pathogenicity, it has been proposed to drive the exchange and the diversification of host-interaction factors within Bartonella communities such as VirB type IV secretion system (T4SS) and its cognate Bartonella effector proteins. Maintenance of BaGTA is likely driven by selection to increase the likelihood of genetic exchange and facilitates adaptation to host-specific defense systems during infection. [3]

Role

Despite clear genomics-based arguments pointing to a central role for BaGTA in Bartonella biology, direct experimental evidence for its activity are scarce and the molecular mechanisms underlying its activity and regulation remain elusive. [3]

Genome

BaGTA particles are larger than RcGTA and contain 14 kb DNA fragments.  Although this capacity could in principle allow BaGTA to package and transmit its 14 kb GTA cluster, DNA coverage measurements show reduced coverage of the cluster. An adjacent region of high coverage is thought to be due to local DNA replication. [4]

Related Research Articles

<span class="mw-page-title-main">Retrovirus</span> Family of viruses

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.

Virus classification is the process of naming viruses and placing them into a taxonomic system similar to the classification systems used for cellular organisms.

<i>Rhabdoviridae</i> Family of viruses in the order Mononegavirales

Rhabdoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates, invertebrates, plants, fungi and protozoans serve as natural hosts. Diseases associated with member viruses include rabies encephalitis caused by the rabies virus, and flu-like symptoms in humans caused by vesiculoviruses. The name is derived from Ancient Greek rhabdos, meaning rod, referring to the shape of the viral particles. The family has 40 genera, most assigned to three subfamilies.

<i>Hepadnaviridae</i> Family of viruses

Hepadnaviridae is a family of viruses. Humans, apes, and birds serve as natural hosts. There are currently 18 species in this family, divided among 5 genera. Its best-known member is hepatitis B virus. Diseases associated with this family include: liver infections, such as hepatitis, hepatocellular carcinomas, and cirrhosis. It is the sole accepted family in the order Blubervirales.

<i>Geminiviridae</i> Family of viruses

Geminiviridae is a family of plant viruses that encode their genetic information on a circular genome of single-stranded (ss) DNA. There are 520 species in this family, assigned to 14 genera. Diseases associated with this family include: bright yellow mosaic, yellow mosaic, yellow mottle, leaf curling, stunting, streaks, reduced yields. They have single-stranded circular DNA genomes encoding genes that diverge in both directions from a virion strand origin of replication. According to the Baltimore classification they are considered class II viruses. It is the largest known family of single stranded DNA viruses.

<i>Nanoviridae</i> Family of viruses

Nanoviridae is a family of viruses. Plants serve as natural hosts. There are currently 12 species in this family, divided among 2 genera and one unassigned species. Diseases associated with this family include: stunting. Their name is derived from the Greek word νᾶνος, because of their small genome and their stunting effect on infected plants.

Metaviridae is a family of viruses which exist as Ty3-gypsy LTR retrotransposons in a eukaryotic host's genome. They are closely related to retroviruses: members of the family Metaviridae share many genomic elements with retroviruses, including length, organization, and genes themselves. This includes genes that encode reverse transcriptase, integrase, and capsid proteins. The reverse transcriptase and integrase proteins are needed for the retrotransposon activity of the virus. In some cases, virus-like particles can be formed from capsid proteins.

<i>Parapoxvirus</i> Genus of viruses

Parapoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Chordopoxvirinae. Like all members of the family Poxviridae, they are oval, relatively large, double-stranded DNA viruses. Parapoxviruses have a unique spiral coat that distinguishes them from other poxviruses. Parapoxviruses infect vertebrates, including a wide selection of mammals, and humans.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs) sometimes called selfish genetic elements are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

Icerudivirus is a genus of viruses in the family Rudiviridae. These viruses are non-enveloped, stiff-rod-shaped viruses with linear dsDNA genomes, that infect hyperthermophilic archaea of the species Sulfolobus islandicus. There are three species in the genus.

Marseillevirus is a genus of viruses, in the family Marseilleviridae. There are two species in this genus. It is the prototype of a family of nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes. It was isolated from amoeba.

Yatapoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Chordopoxvirinae. Monkeys and baboons serve as natural hosts. There are two species in this genus. Diseases associated with this genus include: histiocytomas, tumor-like mass of mononuclear cells.

<span class="mw-page-title-main">Gene transfer agent</span> DNA-containing virus-like particles produced by bacteria and archaea

Gene transfer agents (GTAs) are DNA-containing virus-like particles that are produced by some bacteria and archaea and mediate horizontal gene transfer. Different GTA types have originated independently from viruses in several bacterial and archaeal lineages. These cells produce GTA particles containing short segments of the DNA present in the cell. After the particles are released from the producer cell, they can attach to related cells and inject their DNA into the cytoplasm. The DNA can then become part of the recipient cells' genome.

Alphaentomopoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Entomopoxvirinae. Coleoptera insects serve as natural hosts. There are seven species in this genus.

Betaentomopoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Entomopoxvirinae. Lepidoptera and orthoptera insects serve as natural hosts. There are 16 species in this genus.

Cervidpoxvirus is a genus of viruses in the family Poxviridae in the subfamily Chordopoxvirinae. Deer serve as natural hosts. Only one species is in this genus: Mule deerpox virus.

Leporipoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Chordopoxvirinae. Lagomorphs and squirrels serve as natural hosts. There are four species in this genus. Diseases associated with this genus include: myxomatosis.

Crocodylidpoxvirus is a genus of viruses, in the family Poxviridae, in the subfamily Chordopoxvirinae. Crocodiles serve as natural hosts. There is only one species in this genus: Nile crocodilepox virus. Diseases associated with this genus include: nodular skin lesions in young animals. Symptoms vary from a nonfatal dermatitis to more severe disease characterized by ophthalmia, rhinitis resulting in asphyxia, and debilitating illness with stunting and high mortality.

Linepithema humile virus-1 (LHUV-1) is a novel virus discovered to be actively replicating within the invasive Argentine ant species. The Argentine ant is extremely invasive across the globe, invading all continents besides Antarctica with their mega-colony. The invasiveness of the ants is allowing the distribution of this virus, among others, into vulnerable honey bee populations which may be responsible for the overall colony collapse.

<span class="mw-page-title-main">Archaeal virus</span>

An archaeal virus is a virus that infects and replicates in archaea, a domain of unicellular, prokaryotic organisms. Archaeal viruses, like their hosts, are found worldwide, including in extreme environments inhospitable to most life such as acidic hot springs, highly saline bodies of water, and at the bottom of the ocean. They have been also found in the human body. The first known archaeal virus was described in 1974 and since then, a large diversity of archaeal viruses have been discovered, many possessing unique characteristics not found in other viruses. Little is known about their biological processes, such as how they replicate, but they are believed to have many independent origins, some of which likely predate the last archaeal common ancestor (LACA).

References

  1. "Virus Taxonomy: 2022 Release". International Committee on Taxonomy of Viruses (ICTV). March 2023. Retrieved 13 August 2023.
  2. 1 2 3 "Proposal 2022.001G.GTA_viriforms Download". International Committee on Taxonomy of Viruses (ICTV). Retrieved 18 August 2023.
  3. 1 2 3 Québatte M, Christen M, Harms A, Körner J, Christen B, Dehio C (June 2017). "Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen". Cell Systems. 4 (6): 611–621.e6. doi:10.1016/j.cels.2017.05.011. PMC   5496983 . PMID   28624614.
  4. Berglund EC, Frank AC, Calteau A, Vinnere Pettersson O, Granberg F, Eriksson AS, Näslund K, Holmberg M, Lindroos H, Andersson SG (July 2009). "Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii". PLOS Genetics. 5 (7): e1000546. doi: 10.1371/journal.pgen.1000546 . PMC   2697382 . PMID   19578403.