Gene transfer agent

Last updated
Comparison of typical phage (bacteriophage) infection and transduction (A) with typical GTA (gene transfer agent) production and transduction (B). Phage and GTA.png
Comparison of typical phage (bacteriophage) infection and transduction (A) with typical GTA (gene transfer agent) production and transduction (B).

Gene transfer agents (GTAs) are DNA-containing virus-like particles that are produced by some bacteria and archaea and mediate horizontal gene transfer. Different GTA types have originated independently from viruses in several bacterial and archaeal lineages. These cells produce GTA particles containing short segments of the DNA present in the cell. After the particles are released from the producer cell, they can attach to related cells and inject their DNA into the cytoplasm.  The DNA can then become part of the recipient cells' genome. [1] [2] [3] [4]

Contents

GTAs are classified as viriforms in the ICTV taxonomy. Among the GTAs mentioned by the article, RcGTA and DsGTA are now in the family Rhodogtaviriformidae , BaGTA in Bartogtaviriformidae , and VSH-1 in Brachygtaviriformidae . [5] Dd1 and VTA do not yet have a classification.

Discovery of gene transfer agents

Methods for detecting gene transfer agents. (A) Method used by Marrs in 1974. (B) Cell-free extract method. GTA discovery.png
Methods for detecting gene transfer agents. (A) Method used by Marrs in 1974. (B) Cell-free extract method.

The first GTA system was discovered in 1974, when mixed cultures of Rhodobacter capsulatus strains produced a high frequency of cells with new combinations of genes. [6] The factor responsible was distinct from known gene-transfer mechanisms in being independent of cell contact, insensitive to deoxyribonuclease, and not associated with phage production. Because of its presumed function it was named gene transfer agent (GTA, now RcGTA) More recently other gene transfer agent systems have been discovered by incubating filtered (cell-free) culture medium with a genetically distinct strain. [3]

GTA genes and evolution

Typical prophage and GTA gene clusters. Prophage and GTA cluster.png
Typical prophage and GTA gene clusters.
Schematic diagram of phylogenetic relationships between known bacterial gene transfer agents. GTA phylogeny.png
Schematic diagram of phylogenetic relationships between known bacterial gene transfer agents.
The evolutionary forces that act on bacterial gene transfer agent and the cells that produce it. GTA evolution.png
The evolutionary forces that act on bacterial gene transfer agent and the cells that produce it.

The genes specifying GTAs are derived from bacteriophage (phage) DNA that has integrated into a host chromosome. Such prophages often acquire mutations that make them defective and unable to produce phage particles.  Many bacterial genomes contain one or more defective prophages that have undergone more-or less-extensive mutation and deletion. Gene transfer agents, like defective prophages, arise by mutation of prophages, but they retain functional genes for the head and tail components of the phage particle (structural genes) and the genes for DNA packaging. The phage genes specifying its regulation and DNA replication have typically been deleted, and expression of the cluster of structural genes is under the control of cellular regulatory systems. Additional genes that contribute to GTA production or uptake are usually present at other chromosome locations. Some of these have regulatory functions, and others contribute directly to GTA production (e.g. the phage-derived lysis genes) or uptake and recombination (e.g. production of cell-surface capsule and DNA transport proteins) These GTA-associated genes are often under coordinated regulation with the main GTA gene cluster. [7]   Phage-derived cell-lysis proteins (holin and endolysin) then weaken the cell wall and membrane, allowing the cell to burst and release the GTA particles. The number of GTA particles produced by each cell is not known.

Some GTA systems appear to be recent additions to their host genomes, but others have been maintained for many millions of years. Where studies of sequence divergence have been done (dN/dS analysis), they indicate that the genes are being maintained by natural selection for protein function (i.e. defective versions are being eliminated). [8] [9]

However, the nature of this selection is not clear. Although the discoverers of GTA assumed that gene transfer was the function of the particles, the presumed benefits of gene transfer come at a substantial cost to the population. Most of this cost arises because GTA-producing cells must lyse (burst open) to release their GTA particles, but there are also genetic costs associated with making new combinations of genes because most new combinations will usually be less fit than the original combination. [10]   One alternative explanation is that GTA genes persist because GTAs are genetic parasites that spread infectiously to new cells. However this is ruled out because GTA particles are typically too small to contain the genes that encode them. For example, the main RcGTA cluster (see below) is 14 kb long, but RcGTA particles can contain only 4–5 kb of DNA.   

Most bacteria have not been screened for the presence of GTAs, and many more GTA systems may await discovery. Although DNA-based surveys for GTA-related genes have found homologs in many genomes, but interpretation is hindered by the difficulty of distinguishing genes that encode GTAs from ordinary prophage genes. [8]   [9]

GTA production

Typical steps in the production of bacterial gene transfer agents. (1) Transcription and translation of the GTA genes. (2) Assembly of GTA structural proteins into empty heads and unattached tails. (3) Packaging of 'headful' segments of DNA into heads and attachment of tails. (4) Lysis of the cell. GTA production.png
Typical steps in the production of bacterial gene transfer agents. (1) Transcription and translation of the GTA genes. (2) Assembly of GTA structural proteins into empty heads and unattached tails. (3) Packaging of 'headful' segments of DNA into heads and attachment of tails. (4) Lysis of the cell.

In laboratory cultures, production of GTAs is typically maximized by particular growth conditions that induce transcription of the GTA genes; most GTAs are not induced by the DNA-damaging treatments that induce many prophages.  Even under maximally inducing conditions only a small fraction of the culture produces GTAs, typically less than 1%. [11] [12]

The steps in GTA production are derived from those of phage infection. The structural genes are first transcribed and translated, and the proteins assembled into empty heads and unattached tails.  The DNA packaging machinery then packs DNA into each head, cutting the DNA when the head is full, attaching a tail to the head, and then moving the newly-created DNA end on to a new empty head. Unlike prophage genes, the genes encoding GTAs are not excised from the genome and replicated for packaging in GTA particles.  The two best studied GTAs (RcGTA and BaGTA) randomly package all of the DNA in the cell, with no overrepresentation of GTA-encoding genes. [11] [13] The number of GTA particles produced by each cell is not known.

GTA-mediated transduction

Genetic transduction by bacterial gene transfer agents. (1) GTA particles encounter a suitable recipient cell. (2) Particles attach to cell and inject their DNA, and cellular proteins translocate the DNA across the inner membrane. (3) DNA is degraded if it cannot recombine with the recipient genome. (4) DNA with similar sequences to the recipient genome undergoes recombination. GTA transduction.png
Genetic transduction by bacterial gene transfer agents. (1) GTA particles encounter a suitable recipient cell. (2) Particles attach to cell and inject their DNA, and cellular proteins translocate the DNA across the inner membrane. (3) DNA is degraded if it cannot recombine with the recipient genome. (4) DNA with similar sequences to the recipient genome undergoes recombination.

Whether release of GTA particles leads to transfer of DNA to new genomes depends on several factors.   First, the particles must survive in the environment – little is known about this, although particles are reported to be quite unstable under laboratory conditions. [14] Second, particles must encounter and attach to suitable recipient cells, usually members of the same or a closely related species.  Like phages, GTAs attach to specific protein or carbohydrate structures on the recipient cell surface before injecting their DNA.  Unlike phage, the well-studied GTAs appear to inject their DNA only across the first of the two membranes surrounding the recipient cytoplasm, and they use a different system, competence-derived rather than phage-derived, to transport one strand of the double-stranded DNA across the inner membrane into the cytoplasm. [15] [16]

If the cell's recombinational repair machinery finds a chromosomal sequence very similar to the incoming DNA, it replaces the former with the latter by homologous recombination, mediated by the cell's RecA protein. If the sequences are not identical this will produce a cell with a new genetic combination.  However, if the incoming DNA is not closely related to DNA sequences in the cell it will be degraded, and the cell will reuse its nucleotides for DNA replication.

Specific GTA systems

RcGTA/Rhodobactegtaviriform (Rhodobacter capsulatus)

Regulation diagram for RcGTA, the Rhodobacter capsulatus gene transfer agent Regulation of RcGTA.png
Regulation diagram for RcGTA, the Rhodobacter capsulatus gene transfer agent

The GTA produced by the alphaproteobacterium Rhodobacter capsulatus , named R. capsulatus GTA (RcGTA), is currently the best studied GTA. When laboratory cultures of R. capsulatus enter stationary phase, a subset of the bacterial population induces production of RcGTA, and the particles are subsequently released from the cells through cell lysis. [12] Most of the RcGTA structural genes are encoded in a ~ 15 kb genetic cluster on the bacterial chromosome. However, other genes required for RcGTA function, such as the genes required for cell lysis, are located separately. [2] [17] RcGTA particles contain 4.5 kb DNA fragments, with even representation of the whole chromosome except for a 2-fold dip at the site of the RcGTA gene cluster. 

Regulation of GTA production and transduction has been best studied in R. capsulatus, where a quorum-sensing system and a CtrA-phosphorelay control expression of not only the main RcGTA gene cluster, but also a holin/endolysin cell lysis system, particle head spikes, an attachment protein (possibly tail fibers), and the capsule and DNA processing genes needed for RcGTA recipient function. An uncharacterized stochastic process further limits expression of the gene cluster is to only 0.1-3% of the cells.  

RcGTA-like clusters are found in a large subclade of the alphaproteobacteria, although the genes also appear to be frequently lost by deletion. Recently, several members of the order Rhodobacterales have been demonstrated to produce functional RcGTA-like particles. Groups of genes with homology to the RcGTA are present in the chromosomes of various types of alphaproteobacteria. [8]

DsGTA/Dinogtaviriform (Dinoroseobacter shibae)

D. shibae, like R. capsulatus, is a member of the Order Rhodobacterales, and its GTA shares a common ancestor and many features with RcGTA, including gene organization, packaging of short DNA fragments (4.2 kb) and regulation by quorum sensing and a CtrA phosphorelay. [18]   However, its DNA packaging machinery has much more specificity, with sharp peaks and valleys of coverage suggestion that it may preferentially initiate packaging at specific sites in the genome.  The DNA of the major DsGTA gene cluster is packaged very poorly.   

BaGTA/Bartonegtaviriform (Bartonella species)

Bartonella species are members of the Alphaproteobacteria like R. capsulatus and D. shibae, but BaGTA is not related to RcGTA and DsGTA. [19]  BaGTA particles are larger than RcGTA and contain 14 kb DNA fragments.  Although this capacity could in principle allow BaGTA to package and transmit its 14 kb GTA cluster, measurements of DNA coverage show reduced coverage of the cluster. An adjacent region of high coverage is thought to be due to local DNA replication. [13]

VSH-1 (Brachyspira hyodysenteriae)

Brachyspira is a genus of spirochete; several species have been shown to carry homologous GTA gene clusters.  Particles contain 7.5 kb DNA fragments.  Production of VSH-1 is stimulated by the DNA-damaging agent mitomycin C and by some antibiotics.  It is also associated with detectable cell lysis, indicating that a substantial fraction of the culture may be producing VSH-1. [20]

Dd1 (Desulfovibriondesulfuricans)

D. desulfuricans is a soil bacterium in the deltaproteobacteria; Dd1 packages 13.6 kb of DNA fragments. It is unclear which genes encode for this GTA: there is one 17.8 kb area with phage-like structural genes in the bacterial genome, but their link to GTA production is not yet experimentally proven. [21]

VTA (Methanococcus voltae)

M. voltae is an archaean; its GTA is known to transfer 4.4 kb DNA fragments but has not been otherwise characterized, [22] although a defective provirus related to Methanococcus head-tailed viruses (Caudoviricetes) in M. voltae A3 genome has been suggested to represent the GTA locus. [23] A possible terL terminase ( D7DSG2 ) was again identified in 2019. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Bacteriophage</span> Virus that infects and replicates within bacteria

A bacteriophage, also known informally as a phage, is a virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν, meaning "to devour". Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes and as many as hundreds of genes. Phages replicate within the bacterium following the injection of their genome into its cytoplasm.

<span class="mw-page-title-main">Lambda phage</span> Bacteriophage that infects Escherichia coli

Enterobacteria phage λ is a bacterial virus, or bacteriophage, that infects the bacterial species Escherichia coli. It was discovered by Esther Lederberg in 1950. The wild type of this virus has a temperate life cycle that allows it to either reside within the genome of its host through lysogeny or enter into a lytic phase, during which it kills and lyses the cell to produce offspring. Lambda strains, mutated at specific sites, are unable to lysogenize cells; instead, they grow and enter the lytic cycle after superinfecting an already lysogenized cell.

Virus classification is the process of naming viruses and placing them into a taxonomic system similar to the classification systems used for cellular organisms.

<span class="mw-page-title-main">Prophage</span> Bacteriophage genome that is integrated into a bacterial cell

A prophage is a bacteriophage genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. Integration of prophages into the bacterial host is the characteristic step of the lysogenic cycle of temperate phages. Prophages remain latent in the genome through multiple cell divisions until activation by an external factor, such as UV light, leading to production of new phage particles that will lyse the cell and spread. As ubiquitous mobile genetic elements, prophages play important roles in bacterial genetics and evolution, such as in the acquisition of virulence factors.

<span class="mw-page-title-main">Transduction (genetics)</span> Transfer process in genetics

Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA, and it is DNase resistant. Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome.

<i>Escherichia virus T4</i> Species of bacteriophage

Escherichia virus T4 is a species of bacteriophages that infect Escherichia coli bacteria. It is a double-stranded DNA virus in the subfamily Tevenvirinae from the family Myoviridae. T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle. The species was formerly named T-even bacteriophage, a name which also encompasses, among other strains, Enterobacteria phage T2, Enterobacteria phage T4 and Enterobacteria phage T6.

Microviridae is a family of bacteriophages with a single-stranded DNA genome. The name of this family is derived from the ancient Greek word μικρός (mikrós), meaning "small". This refers to the size of their genomes, which are among the smallest of the DNA viruses. Enterobacteria, intracellular parasitic bacteria, and spiroplasma serve as natural hosts. There are 22 species in this family, divided among seven genera and two subfamilies.

<span class="mw-page-title-main">Lysogenic cycle</span> Process of virus reproduction

Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction. Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formation of a circular replicon in the bacterial cytoplasm. In this condition the bacterium continues to live and reproduce normally, while the bacteriophage lies in a dormant state in the host cell. The genetic material of the bacteriophage, called a prophage, can be transmitted to daughter cells at each subsequent cell division, and later events can release it, causing proliferation of new phages via the lytic cycle.

P1 is a temperate bacteriophage that infects Escherichia coli and some other bacteria. When undergoing a lysogenic cycle the phage genome exists as a plasmid in the bacterium unlike other phages that integrate into the host DNA. P1 has an icosahedral head containing the DNA attached to a contractile tail with six tail fibers. The P1 phage has gained research interest because it can be used to transfer DNA from one bacterial cell to another in a process known as transduction. As it replicates during its lytic cycle it captures fragments of the host chromosome. If the resulting viral particles are used to infect a different host the captured DNA fragments can be integrated into the new host's genome. This method of in vivo genetic engineering was widely used for many years and is still used today, though to a lesser extent. P1 can also be used to create the P1-derived artificial chromosome cloning vector which can carry relatively large fragments of DNA. P1 encodes a site-specific recombinase, Cre, that is widely used to carry out cell-specific or time-specific DNA recombination by flanking the target DNA with loxP sites.

<span class="mw-page-title-main">Mobilome</span>

The mobilome is the entire set of mobile genetic elements in a genome. Mobilomes are found in eukaryotes, prokaryotes, and viruses. The compositions of mobilomes differ among lineages of life, with transposable elements being the major mobile elements in eukaryotes, and plasmids and prophages being the major types in prokaryotes. Virophages contribute to the viral mobilome.

<span class="mw-page-title-main">Corynebacteriophage</span> Virus of bacteria

A corynebacteriophage is a DNA-containing bacteriophage specific for bacteria of genus Corynebacterium as its host. Corynebacterium diphtheriae virus strain Corynebacterium diphtheriae phage introduces toxigenicity into strains of Corynebacterium diphtheriae as it encodes diphtheria toxin, it has subtypes beta c and beta vir. According to proposed taxonomic classification, corynephages β and ω are unclassified members of the genus Lambdavirus, family Siphoviridae.

<span class="mw-page-title-main">Bacteriophage P2</span> Species of virus

Bacteriophage P2, scientific name Escherichia virus P2, is a temperate phage that infects E. coli. It is a tailed virus with a contractile sheath and is thus classified in the genus Peduovirus, subfamily Peduovirinae, family Myoviridae within order Caudovirales. This genus of viruses includes many P2-like phages as well as the satellite phage P4.

Holins are a diverse group of small proteins produced by dsDNA bacteriophages in order to trigger and control the degradation of the host's cell wall at the end of the lytic cycle. Holins form pores in the host's cell membrane, allowing lysins to reach and degrade peptidoglycan, a component of bacterial cell walls. Holins have been shown to regulate the timing of lysis with great precision. Over 50 unrelated gene families encode holins, making them the most diverse group of proteins with common function. Together with lysins, holins are being studied for their potential use as antibacterial agents.

Zygotic induction occurs when a bacterial cell carrying the silenced DNA of a bacterial virus in its chromosome transfers the viral DNA along with its own DNA to another bacterial cell lacking the virus, causing the recipient of the DNA to break open. In the donor cell, a repressor protein encoded by the prophage keeps the viral genes turned off so that virus is not produced. When DNA is transferred to the recipient cell by conjugation, the viral genes in the transferred DNA are immediately turned on because the recipient cell lacks the repressor. As a result, many virus are made in the recipient cell, and lysis eventually occurs to release the new virus.

SaPIs are a family of ~15 kb mobile genetic elements resident in the genomes of the vast majority of S. aureus strains. Much like bacteriophages, SaPIs can be transferred to uninfected cells and integrate into the host chromosome. Unlike the bacterial viruses, however, integrated SaPIs are mobilized by host infection with "helper" bacteriophages. SaPIs are used by the host bacteria to co-opt the phage reproduction cycle for their own genetic transduction and also inhibit phage reproduction in the process.

The CTXφ bacteriophage is a filamentous bacteriophage. It is a positive-strand DNA virus with single-stranded DNA (ssDNA).

Rhodobacter capsulatus is a species of purple bacteria, a group of bacteria that can obtain energy through photosynthesis. Its name is derived from the Latin adjective "capsulatus", itself derived Latin noun "capsula", and the associated Latin suffix for masculine nouns, "-atus".

Gene transfer agent-release holins are holins which are believed to facilitate the lysis-dependent release of a gene transfer agent. Particularly the gene transfer agent of Rhodobacter capsulatus (RcGTA), which is known to be a bacteriophage-like genetic element that induces horizontal gene transfer. The promoter of the RcGTA gene was identified by Westbye et al. in 2013. A representative list of members belonging to the GTA-Hol family can be found in the Transporter Classification Database with homologues found in Pseudomonadota and caudovirales.

The Brachyspira holin (B-Hol) Family consists of several proteins from the GTA holin of Brachyspira hyodysenteriae, which facilitates gene transfer agent-release to VSH-1 holin of Brachyspira pilosicoli. VSH-1 is thought to participate in cell lysis. These proteins range in size from about 85 to 145 amino acyl residues (aas) and exhibit between 2 and 4 transmembrane segments (TMSs). A representative list of proteins belonging to the B-Hol family can be found in the Transporter Classification Database.

Bartonegtaviriform is a genus of viriforms in the family Bartogtaviriformidae. It includes one species: Bartonegtaviriform andersoni (BaGTA), which is a Gene transfer agent.

References

  1. Lang AS, Westbye AB, Beatty JT (September 2017). "The Distribution, Evolution, and Roles of Gene Transfer Agents in Prokaryotic Genetic Exchange". Annual Review of Virology. 4 (1): 87–104. doi:10.1146/annurev-virology-101416-041624. PMID   28784044.
  2. 1 2 Lang AS, Zhaxybayeva O, Beatty JT (June 2012). "Gene transfer agents: phage-like elements of genetic exchange". Nature Reviews. Microbiology. 10 (7): 472–82. doi:10.1038/nrmicro2802. PMC   3626599 . PMID   22683880.
  3. 1 2 Stanton TB (April 2007). "Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species". Anaerobe. 13 (2): 43–9. doi:10.1016/j.anaerobe.2007.03.004. PMID   17513139.
  4. Grüll MP, Mulligan ME, Lang AS (October 2018). "Small extracellular particles with big potential for horizontal gene transfer: membrane vesicles and gene transfer agents". FEMS Microbiology Letters. 365 (19). doi: 10.1093/femsle/fny192 . PMID   30085064.
  5. Kogay, R; Koppenhöfer, S; Beatty, JT; Kuhn, JH; Lang, AS; Zhaxybayeva, O (2022). "Formal recognition and classification of gene transfer agents as viriforms". Virus Evolution. 8 (2): veac100. doi:10.1093/ve/veac100. PMC   9662315 . PMID   36381234.
  6. Marrs B (March 1974). "Genetic recombination in Rhodopseudomonas capsulata". Proceedings of the National Academy of Sciences of the United States of America. 71 (3): 971–3. Bibcode:1974PNAS...71..971M. doi: 10.1073/pnas.71.3.971 . PMC   388139 . PMID   4522805.
  7. Westbye AB, Beatty JT, Lang AS (August 2017). "Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators". Current Opinion in Microbiology. 38: 122–129. doi:10.1016/j.mib.2017.05.003. PMID   28599143.
  8. 1 2 3 Shakya M, Soucy SM, Zhaxybayeva O (July 2017). "Insights into origin and evolution of α-proteobacterial gene transfer agents". Virus Evolution. 3 (2): vex036. doi:10.1093/ve/vex036. PMC   5721377 . PMID   29250433.
  9. 1 2 Tamarit D, Neuvonen MM, Engel P, Guy L, Andersson SG (February 2018). "Origin and Evolution of the Bartonella Gene Transfer Agent". Molecular Biology and Evolution. 35 (2): 451–464. doi: 10.1093/molbev/msx299 . PMID   29161442.
  10. Redfield RJ, Soucy SM (2018). "Evolution of Bacterial Gene Transfer Agents". Frontiers in Microbiology. 9: 2527. doi: 10.3389/fmicb.2018.02527 . PMC   6209664 . PMID   30410473.
  11. 1 2 Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS (July 2012). "DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA". Molecular Microbiology. 85 (2): 314–25. doi: 10.1111/j.1365-2958.2012.08113.x . PMID   22640804.
  12. 1 2 Fogg PC, Westbye AB, Beatty JT (2012). Banfield BW (ed.). "One for all or all for one: heterogeneous expression and host cell lysis are key to gene transfer agent activity in Rhodobacter capsulatus". PLOS ONE. 7 (8): e43772. Bibcode:2012PLoSO...743772F. doi: 10.1371/journal.pone.0043772 . PMC   3423380 . PMID   22916305.
  13. 1 2 Berglund EC, Frank AC, Calteau A, Vinnere Pettersson O, Granberg F, Eriksson AS, Näslund K, Holmberg M, Lindroos H, Andersson SG (July 2009). "Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii". PLOS Genetics. 5 (7): e1000546. doi: 10.1371/journal.pgen.1000546 . PMC   2697382 . PMID   19578403.
  14. Marrs, B.; Yen, H. C.; Solioz, M. (1975-08-01). "Release and uptake of gene transfer agent by Rhodopseudomonas capsulata". Journal of Bacteriology. 123 (2): 651–657. doi:10.1128/jb.123.2.651-657.1975. ISSN   1098-5530. PMC   235772 . PMID   1150627.
  15. Brimacombe CA, Stevens A, Jun D, Mercer R, Lang AS, Beatty JT (February 2013). "Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA)". Molecular Microbiology. 87 (4): 802–17. doi:10.1111/mmi.12132. PMC   3641046 . PMID   23279213.
  16. Brimacombe CA, Ding H, Johnson JA, Beatty JT (August 2015). "Homologues of Genetic Transformation DNA Import Genes Are Required for Rhodobacter capsulatus Gene Transfer Agent Recipient Capability Regulated by the Response Regulator CtrA". Journal of Bacteriology. 197 (16): 2653–63. doi:10.1128/JB.00332-15. PMC   4507343 . PMID   26031909.
  17. Westbye AB, Leung MM, Florizone SM, Taylor TA, Johnson JA, Fogg PC, Beatty JT (November 2013). "Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent". Journal of Bacteriology. 195 (22): 5025–40. doi:10.1128/JB.00669-13. PMC   3811591 . PMID   23995641.
  18. Tomasch J, Wang H, Hall AT, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I (January 2018). "Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random". Genome Biology and Evolution. 10 (1): 359–369. doi:10.1093/gbe/evy005. PMC   5786225 . PMID   29325123.
  19. Québatte M, Christen M, Harms A, Körner J, Christen B, Dehio C (June 2017). "Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen". Cell Systems. 4 (6): 611–621.e6. doi:10.1016/j.cels.2017.05.011. PMC   5496983 . PMID   28624614.
  20. Motro Y, La T, Bellgard MI, Dunn DS, Phillips ND, Hampson DJ (March 2009). "Identification of genes associated with prophage-like gene transfer agents in the pathogenic intestinal spirochaetes Brachyspira hyodysenteriae, Brachyspira pilosicoli and Brachyspira intermedia". Veterinary Microbiology. 134 (3–4): 340–5. doi:10.1016/j.vetmic.2008.09.051. PMID   18950961.
  21. Lang, AS; Zhaxybayeva, O; Beatty, JT (11 June 2012). "Gene transfer agents: phage-like elements of genetic exchange". Nature Reviews. Microbiology. 10 (7): 472–82. doi:10.1038/nrmicro2802. PMC   3626599 . PMID   22683880.
  22. Bertani G (May 1999). "Transduction-like gene transfer in the methanogen Methanococcus voltae". Journal of Bacteriology. 181 (10): 2992–3002. doi:10.1128/JB.181.10.2992-3002.1999. PMC   93752 . PMID   10321998.
  23. Krupovic, M; Forterre, P; Bamford, DH (2010). "Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria". Journal of Molecular Biology. 397 (1): 144–60. doi:10.1016/j.jmb.2010.01.037. PMID   20109464.
  24. Sherlock, D; Leong, JX; Fogg, PCM (1 December 2019). "Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA". Journal of Virology. 93 (23). doi: 10.1128/JVI.01328-19 . PMC   6854486 . PMID   31534034.