Basque Coast Geopark

Last updated

Basque Coast Geopark
Sakoneta, Deba.jpg
Aerial view of Sakoneta, Deba
Relief Map of Spain.png
Red pog.svg
Location in Spain
Relief map of Spain Basque Country (cropped).png
Red pog.svg
Shown within Basque Country
Coordinates 43°17′53″N2°18′36″W / 43.2980°N 2.3100°W / 43.2980; -2.3100
Area89 km2 (34 sq mi)
Designation UNESCO Global Geopark
Designated UNESCO

The Basque Coast Geopark (Basque language: Euskal Kostaldeko Geoparkea), formally the Basque Coast UNESCO Global Geopark, is an area of the Basque Country in the north of Spain which became a member of the European Geoparks Network in 2010, one of several Global Geoparks in Spain. It comprises 89 square kilometres of countryside with a 23 km long cliffed coast fronting the Bay of Biscay. Inland it comprises hilly country which reaches up to Sesiarte which is 755m above sea level. [1] [2] The main communities within the Geopark are Zumaia, Deba and Mutriku. The A8 Cantabrian motorway runs east–west through the Geopark.

Contents

Geology

The Geopark comprises two distinct geological terrains, the coast characterised by steep cliffs of flysch of late Cretaceous to Palaeogene age and hills and mountains characterised by limestone which has given rise to karstic landscapes.

The flysch cliffs arranged along the coast record 60 million years of unbroken deposition of marine sediments from the Cretaceous period through into the Palaeocene and Eocene stages of the succeeding Palaeogene period. Alternating layers of sandstone and mudstone deposited as turbidite flows were originally laid down flat but have been tilted at angles up to the vertical by tectonic forces associated with the Alpine orogeny. An extensive wave-cut platform is exposed at low tide. These coastal sections include outcrops which record the significant K-T (or K-Pg) boundary defined by the geological event which caused the demise of the dinosaurs some 66.0 million years ago. [3]

The oldest bedrock exposed within the area dates from the late Triassic period and comprises the gypsums and clays found in the Mutriku area. The youngest are sandstones, limestones and shales of the Eocene part of the Palaeogene, found around Zumaia. [4]

IUGS geological heritage site

In respect of the site being 'one of the best exposed, most continuous and highly studied outcrops of deep marine sediments in the world' the 'Cretaceous-Paleogene Stratigraphic Section of Zumaia' was included by the International Union of Geological Sciences (IUGS) in its assemblage of 100 'geological heritage sites' around the world in a listing published in October 2022. The organisation defines an 'IUGS Geological Heritage Site' as 'a key place with geological elements and/or processes of international scientific relevance, used as a reference, and/or with a substantial contribution to the development of geological sciences through history.' [5]

Geotourism

The Geopark promotes two sets of guided tours for visitors, the Flysch Route explores numerous geological localities along the coast and the Karst Route explores aspects of both natural and cultural heritage inland. The Algorri Interpretation Centre in Zumaia houses an exhibition on the coastal heritage along with other facilities. [6] In Mutriku, the Nautilus Interpretation Centre is home to a private fossil collection assembled by Jesus M. Narvaez Amasorrain and Esperanza Azkarrag, now on public display. [1] [7]

Related Research Articles

<span class="mw-page-title-main">Zumaia</span> Municipality in Basque Country, Spain

Zumaia is a small town in the north of Spain in the Basque Country.

<span class="mw-page-title-main">Geology of Dorset</span>

Dorset is a county in South West England on the English Channel coast. Covering an area of 2,653 square kilometres (1,024 sq mi); it borders Devon to the west, Somerset to the north-west, Wiltshire to the north-east, and Hampshire to the east. The great variation in its landscape owes much to the underlying geology, which includes an almost unbroken sequence of rocks from 200 to 40 million years ago (Mya) and superficial deposits from 2 Mya to the present. In general, the oldest rocks appear in the far west of the county, with the most recent (Eocene) in the far east. Jurassic rocks also underlie the Blackmore Vale and comprise much of the coastal cliff in the west and south of the county; although younger Cretaceous rocks crown some of the highpoints in the west, they are mainly to be found in the centre and east of the county.

The geology of the Netherlands describes the geological sequence of the Netherlands. Large parts of the Netherlands today are below sea level and have in the past been covered by the sea or flooded at regular intervals. The modern Netherlands formed as a result of the interplay of the four main rivers and the influence of the North Sea and glaciers during ice-ages. The Netherlands is mostly composed of deltaic, coastal and eolian derived sediments during the Pleistocene glacial and interglacial periods.

<span class="mw-page-title-main">Geology of England</span> Overview of the geology of England

The geology of England is mainly sedimentary. The youngest rocks are in the south east around London, progressing in age in a north westerly direction. The Tees–Exe line marks the division between younger, softer and low-lying rocks in the south east and the generally older and harder rocks of the north and west which give rise to higher relief in those regions. The geology of England is recognisable in the landscape of its counties, the building materials of its towns and its regional extractive industries.

<span class="mw-page-title-main">Marble Arch Caves Global Geopark</span> Lies on the Fermanagh-Cavan border, Ireland

The Cuilcagh Lakelands Geopark formerly known as the Marble Arch Caves Global Geopark straddles the border between Northern Ireland and the Republic of Ireland. It is centred on the Marble Arch Caves and in 2001 it became one of the first geoparks to be designated in Europe.

<span class="mw-page-title-main">Geology of the Pyrenees</span> European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

<span class="mw-page-title-main">Geology of East Sussex</span> Overview of the geology of East Sussex

The geology of East Sussex is defined by the Weald–Artois anticline, a 60 kilometres (37 mi) wide and 100 kilometres (62 mi) long fold within which caused the arching up of the chalk into a broad dome within the middle Miocene, which has subsequently been eroded to reveal a lower Cretaceous to Upper Jurassic stratigraphy. East Sussex is best known geologically for the identification of the first dinosaur by Gideon Mantell, near Cuckfield, to the famous hoax of the Piltdown man near Uckfield.

<span class="mw-page-title-main">Geology of the Isle of Skye</span>

The geology of the Isle of Skye in Scotland is highly varied and the island's landscape reflects changes in the underlying nature of the rocks. A wide range of rock types are exposed on the island, sedimentary, metamorphic and igneous, ranging in age from the Archaean through to the Quaternary.

<span class="mw-page-title-main">Geology of the Isle of Wight</span>

The geology of the Isle of Wight is dominated by sedimentary rocks of Cretaceous and Paleogene age. This sequence was affected by the late stages of the Alpine Orogeny, forming the Isle of Wight monocline, the cause of the steeply-dipping outcrops of the Chalk Group and overlying Paleogene strata seen at The Needles, Alum Bay and Whitecliff Bay.

The geology of Norfolk in eastern England largely consists of late Mesozoic and Cenozoic sedimentary rocks of marine origin covered by an extensive spread of unconsolidated recent deposits.

The geology of West Sussex in southeast England comprises a succession of sedimentary rocks of Cretaceous age overlain in the south by sediments of Palaeogene age. The sequence of strata from both periods consists of a variety of sandstones, mudstones, siltstones and limestones. These sediments were deposited within the Hampshire and Weald basins. Erosion subsequent to large scale but gentle folding associated with the Alpine Orogeny has resulted in the present outcrop pattern across the county, dominated by the north facing chalk scarp of the South Downs. The bedrock is overlain by a suite of Quaternary deposits of varied origin. Parts of both the bedrock and these superficial deposits have been worked for a variety of minerals for use in construction, industry and agriculture.

<span class="mw-page-title-main">Geology of Germany</span> Overview of the geology of Germany

The geology of Germany is heavily influenced by several phases of orogeny in the Paleozoic and the Cenozoic, by sedimentation in shelf seas and epicontinental seas and on plains in the Permian and Mesozoic as well as by the Quaternary glaciations.

The geology of the Isle of Man consists primarily of a thick pile of sedimentary rocks dating from the Ordovician period, together with smaller areas of later sedimentary and extrusive igneous strata. The older strata was folded and faulted during the Caledonian and Acadian orogenies The bedrock is overlain by a range of glacial and post-glacial deposits. Igneous intrusions in the form of dykes and plutons are common, some associated with mineralisation which spawned a minor metal mining industry.

The geology of Georgia is the study of rocks, minerals, water, landforms and geologic history in Georgia. The country is dominated by the Caucasus Mountains at the junction of the Eurasian Plate and the Afro-Arabian Plate, and rock units from the Mesozoic and Cenozoic are particularly prevalent. For much of its geologic history, until the uplift of the Caucasus, Georgia was submerged by marine transgression events. Geologic research for 150 years by Georgian and Russian geologists has shed significant light on the region and since the 1970s has been augmented with the understanding of plate tectonics.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

The geology of Trinidad and Tobago includes two different islands with different geological histories.

The geology of national parks in Britain strongly influences the landscape character of each of the fifteen such areas which have been designated. There are ten national parks in England, three in Wales and two in Scotland. Ten of these were established in England and Wales in the 1950s under the provisions of the National Parks and Access to the Countryside Act 1949. With one exception, all of these first ten, together with the two Scottish parks were centred on upland or coastal areas formed from Palaeozoic rocks. The exception is the North York Moors National Park which is formed from sedimentary rocks of Jurassic age.

This article describes the geology of the Brecon Beacons National Park in mid/south Wales. The area gained national park status in 1957 with the designated area of 1,344 km2 (519 sq mi) including mountain massifs to both the east and west of the Brecon Beacons proper. The geology of the national park consists of a thick succession of sedimentary rocks laid down from the late Ordovician through the Silurian and Devonian to the late Carboniferous period. The rock sequence most closely associated with the park is the Old Red Sandstone from which most of its mountains are formed. The older parts of the succession, in the northwest, were folded and faulted during the Caledonian orogeny. Further faulting and folding, particularly in the south of the park is associated with the Variscan orogeny.

The geology of Anglesey, the largest (714 km2) island in Wales is some of the most complex in the country. Anglesey has relatively low relief, the 'grain' of which runs northeast–southwest, i.e. ridge and valley features extend in that direction reflecting not only the trend of the late Precambrian and Palaeozoic age bedrock geology but also the direction in which glacial ice traversed and scoured the island during the last ice age. It was realised in the 1980s that the island is composed of multiple terranes, recognition of which is key to understanding its Precambrian and lower Palaeozoic evolution. The interpretation of the island's geological complexity has been debated amongst geologists for decades and recent research continues in that vein.

References

  1. 1 2 "Basque Coast Geopark – SPAIN".
  2. "Basque Coast Geopark - Geoparkea - Flysch & Karst experience".
  3. "Geology - Geoparkea - Flysch & Karst experience". Archived from the original on 26 November 2018. Retrieved 25 November 2018.
  4. AAFF Mapa Geoparkea geoparkea.eus
  5. "The First 100 IUGS Geological Heritage Sites" (PDF). IUGS International Commission on Geoheritage. IUGS. Retrieved 10 November 2022.
  6. "Home". algorri.eus.
  7. "Museo Nautilus".