Bass diffusion model

Last updated

The Bass model or Bass diffusion model was developed by Frank Bass. It consists of a simple differential equation that describes the process of how new products get adopted in a population. The model presents a rationale of how current adopters and potential adopters of a new product interact. The basic premise of the model is that adopters can be classified as innovators or as imitators, and the speed and timing of adoption depends on their degree of innovation and the degree of imitation among adopters. The Bass model has been widely used in forecasting, especially new products' sales forecasting and technology forecasting. Mathematically, the basic Bass diffusion is a Riccati equation with constant coefficients equivalent to Verhulst—Pearl Logistic growth.

Contents

In 1969, Frank Bass published his paper on a new product growth model for consumer durables. [1] :1833 [2] Prior to this, Everett Rogers published Diffusion of Innovations, a highly influential work that described the different stages of product adoption. Bass contributed some mathematical ideas to the concept. [3] While the Rogers model describes all four stages of the product lifecycle (Introduction, Growth, Maturity, Decline), The Bass model focuses on the first two (Introduction and Growth). Some of the Bass-Model extensions present mathematical models for the last two (Maturity and Decline).

Model formulation

[2]

Where:

Expressed as an ordinary differential equation,

Sales (or new adopters) at time is the rate of change of installed base, i.e., multiplied by the ultimate market potential. Under the condition, we have that

[2]

We have the decomposition where is the number of innovators at time, and is the number of imitators at time.

The time of peak sales:

[2]

The times of the inflection points at the new adopters' curve:

[4]

or in another form (related to peak sales):

[4]

The peak time and inflection points' times must be positive. When is negative, sales have no peak (and decline since introduction). There are cases (depending on the values of and) when the new adopters curve (that begins at 0) has only one or zero inflection points.

Explanation

The coefficient is called the coefficient of innovation, external influence or advertising effect. The coefficient is called the coefficient of imitation, internal influence or word-of-mouth effect.

Typical values of and when time is measured in years: [5]

Bass adopters.svg Bass new adopters.svg

Derivation

The Bass diffusion model is derived by assuming that the hazard rate for the uptake of a product or service may be defined as:

where is the probability density function and is the survival function, with being the cumulative distribution function. From these basic definitions in survival analysis, we know that:

Therefore, the differential equation for the survival function is equivalent to:

Integration and rearrangement of terms gives us that:

For any survival function, we must have that and this implies that . With this condition, the survival function is:

Finally, using the fact that , we find that the Bass diffusion model for product uptake is:

Extensions to the model

Generalised Bass model (with pricing)

Bass found that his model fit the data for almost all product introductions, despite a wide range of managerial decision variables, e.g. pricing and advertising. This means that decision variables can shift the Bass curve in time, but that the shape of the curve is always similar.

Although many extensions of the model have been proposed, only one of these reduces to the Bass model under ordinary circumstances. [6]

Bass diffusion model.svg

This model was developed in 1994 by Frank Bass, Trichy Krishnan and Dipak Jain:

where is a function of percentage change in price and other variables

Unlike the Bass model which has an analytic solution, but can also be solved numerically, the generalized bass models usually do not have analytic solutions and must be solved numerically. Orbach (2016) [7] notes that the values of p,q are not perfectly identical for the continuous-time and discrete-time forms. For the common cases (where p is within the range of 0.01-0.03 and q within the range of 0.2-0.4) the discrete-time and continuous-time forecasts are very close. For other p,q values the forecasts may divert significantly.  

Successive generations

An example of a forecast with 8 generations Generations 8.gif
An example of a forecast with 8 generations

Technology products succeed one another in generations. Norton and Bass extended the model in 1987 for sales of products with continuous repeat purchasing. The formulation for three generations is as follows: [8]

where

It has been found that the p and q terms are generally the same between successive generations.

Relationship with other s-curves

There are two special cases of the Bass diffusion model.

The Bass model is a special case of the Gamma/shifted Gompertz distribution (G/SG): Bemmaor [9] (1994)

Use in online social networks

The rapid, recent (as of early 2007) growth in online social networks (and other virtual communities) has led to an increased use of the Bass diffusion model. The Bass diffusion model is used to estimate the size and growth rate of these social networks. The work by Christian Bauckhage and co-authors [10] shows that the Bass model provides a more pessimistic picture of the future than alternative model(s) such as the Weibull distribution and the shifted Gompertz distribution.

The ranges of the p, q parameters

Bass (1969) [2] distinguished between a case of p<q wherein periodic sales grow and then decline (a successful product has a periodic sales peak); and a case of p>q wherein periodic sales decline from launch (no peak).

Jain et al. (1995) [11] explored the impact of seeding. When using seeding, diffusion can begin when p + qF(0) > 0 even if p’s value is negative, but a marketer uses seeding strategy with seed size of F(0) > -p/q . The interpretation of a negative p value does not necessarily mean that the product is useless: There can be cases wherein there are price or effort barriers to adoption when very few others have already adopted. When others adopt, the benefits from the product increase, due to externalities or uncertainty reduction, and the product becomes more and more plausible for many potential customers.

Moldovan and Goldenberg (2004) [12] incorporated negative word of mouth (WOM) effect on the diffusion, which implies a possibility of a negative q. Negative q does not necessarily mean that adopters are disappointed and dissatisfied with their purchase. It can fit a case wherein the benefit from a product declines as more people adopt. For example, for a certain demand level for train commuting, reserved tickets may be sold to those who like to guarantee a seat. Those who do not reserve seating may have to commute while standing. As more reserved seating are sold, the crowding in the non-reserved railroad car is reduced, and the likelihood of finding a seat in the non-reserved car increases, thus reducing the incentive to buy reserved seating. While the non-cumulative sales curve with negative q is similar to those with q=0, the cumulative sales curve presents a more interesting situation: When p > -q, the market will reach 100% of its potential, eventually, as for a regular positive value of q. However, if p < -q, at the long-range, the market will saturate at an equilibrium level –p/q of its potential.

Orbach (2022) [13] summarized the diffusion behavior at each portion of the p,q space and maps the extended (p,q) regions beyond the positive right quadrant (where diffusion is spontaneous) to other regions where diffusion faces barriers (negative p), where diffusion requires “stimuli” to start, or resistance of adopters to new members (negative q), which might stabilize the market below full adoption, occur.

A map of the extended Bass p-q space Pq space.gif
A map of the extended Bass p-q space

Adoption of this model

The model is one of the most cited empirical generalizations in marketing; as of August 2023 the paper "A New Product Growth for Model Consumer Durables" published in Management Science had (approximately) 11352 citations in Google Scholar. [14]

This model has been widely influential in marketing and management science. In 2004 it was selected as one of the ten most frequently cited papers in the 50-year history of Management Science. [3] It was ranked number five, and the only marketing paper in the list. It was subsequently reprinted in the December 2004 issue of Management Science. [3]

The Bass model was developed for consumer durables. However, it has been used also to forecast market acceptance of numerous consumer and industrial products and services, including tangible, non-tangible, medical, [15] [16] and financial [17] products. Sultan [18] et al. (1990) applied the Bass model to 213 product categories, mostly consumer durables (in a wide range of prices) but also to services such as motels and industrial/farming products like hybrid corn seeds.

See also

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.

In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.

<span class="mw-page-title-main">Logistic function</span> S-shaped curve

A logistic function or logistic curve is a common S-shaped curve with the equation

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

Product forecasting is the science of predicting the degree of success a new product will enjoy in the marketplace. To do this, the forecasting model must take into account such things as product awareness, distribution, price, fulfilling unmet needs and competitive alternatives.

<span class="mw-page-title-main">Shifted Gompertz distribution</span>

The shifted Gompertz distribution is the distribution of the larger of two independent random variables one of which has an exponential distribution with parameter and the other has a Gumbel distribution with parameters and . In its original formulation the distribution was expressed referring to the Gompertz distribution instead of the Gumbel distribution but, since the Gompertz distribution is a reverted Gumbel distribution, the labelling can be considered as accurate. It has been used as a model of adoption of innovations. It was proposed by Bemmaor (1994). Some of its statistical properties have been studied further by Jiménez and Jodrá (2009) and Jiménez Torres (2014).

<span class="mw-page-title-main">Spinodal decomposition</span> Mechanism of spontaneous phase separation

Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases. Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.

Demand forecasting refers to the process of predicting the quantity of goods and services that will be demanded by consumers at a future point in time. More specifically, the methods of demand forecasting entail using predictive analytics to estimate customer demand in consideration of key economic conditions. This is an important tool in optimizing business profitability through efficient supply chain management. Demand forecasting methods are divided into two major categories, qualitative and quantitative methods. Qualitative methods are based on expert opinion and information gathered from the field. This method is mostly used in situations when there is minimal data available for analysis such as when a business or product has recently been introduced to the market. Quantitative methods, however, use available data, and analytical tools in order to produce predictions. Demand forecasting may be used in resource allocation, inventory management, assessing future capacity requirements, or making decisions on whether to enter a new market.

The rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, and product concentrations and other effectors. The degree to which these factors change the reaction rate is described by the elasticity coefficient. This coefficient is defined as follows:

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

The Sethi model was developed by Suresh P. Sethi and describes the process of how sales evolve over time in response to advertising. The model assumes that the rate of change in sales depend on three effects: response to advertising that acts positively on the unsold portion of the market, the loss due to forgetting or possibly due to competitive factors that act negatively on the sold portion of the market, and a random effect that can go either way.

Pitzer equations are important for the understanding of the behaviour of ions dissolved in natural waters such as rivers, lakes and sea-water. They were first described by physical chemist Kenneth Pitzer. The parameters of the Pitzer equations are linear combinations of parameters, of a virial expansion of the excess Gibbs free energy, which characterise interactions amongst ions and solvent. The derivation is thermodynamically rigorous at a given level of expansion. The parameters may be derived from various experimental data such as the osmotic coefficient, mixed ion activity coefficients, and salt solubility. They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory, but Pitzer parameters are more difficult to determine experimentally than SIT parameters.

<span class="mw-page-title-main">Saffman–Delbrück model</span> Mathematical model of lipid membranes

The Saffman–Delbrück model describes a lipid membrane as a thin layer of viscous fluid, surrounded by a less viscous bulk liquid. This picture was originally proposed to determine the diffusion coefficient of membrane proteins, but has also been used to describe the dynamics of fluid domains within lipid membranes. The Saffman–Delbrück formula is often applied to determine the size of an object embedded in a membrane from its observed diffusion coefficient, and is characterized by the weak logarithmic dependence of diffusion constant on object radius.

In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process that generates the probability distribution of a given dataset. They learn the latent structure of a dataset by modeling the way in which data points diffuse through their latent space.

References

  1. Bass, Frank M. (2004). "Comments on "A New Product Growth for Model Consumer Durables": The Bass Model". Management Science. 50 (12): 1833–1840. CiteSeerX   10.1.1.460.1976 . doi:10.1287/mnsc.1040.0300. Perhaps the first thing to notice about the paper that has come to be known as the "Bass Model" (Bass 1969) is the title. It contains a typo. The paper was published with the title: "A New Product Growth for Model Consumer Durables." The correct title should be: "A New Product Growth Model for Consumer Durables."
  2. 1 2 3 4 5 Bass, Frank (1969). "A new product growth for model consumer durables". Management Science. 15 (5): 215–227. doi:10.1287/mnsc.15.5.215.
  3. 1 2 3 Management Science 50 Number 12 Supplement, Dec 2004 ISSN   0025-1909 p1833-1840
  4. 1 2 Mahajan, Vijay; Muller, Eitan; Srivastava, Rajendra K. (1990). "Determination of Adopter Categories by Using Innovation Diffusion Models". Journal of Marketing Research. 27 (1): 37. doi:10.2307/3172549. ISSN   0022-2437. JSTOR   3172549.
  5. Mahajan, Vijay; Eitan Muller; Bass, Frank (1995). "Diffusion of new products: Empirical generalizations and managerial uses". Marketing Science. 14 (3): G79–G88. doi:10.1287/mksc.14.3.G79.
  6. Bass, Frank M.; Trichy V. Krishnan; Dipak C. Jain (1994). "Why the Bass Model Fits without Decision Variables". Marketing Science. 13 (2): 203–223. doi:10.1287/mksc.13.3.203.
  7. Orbach, Yair (2016-04-27). "Parametric analysis of the Bass model". Innovative Marketing. 12 (1): 29–40. doi: 10.21511/im.12(1).2016.03 . ISSN   1814-2427.
  8. Norton, John A.; Frank M. Bass (1987). "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products". Management Science. 33 (9): 1069–1086. CiteSeerX   10.1.1.565.4068 . doi:10.1287/mnsc.33.9.1069.
  9. Bemmaor, Albert C. (1994). "Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity". In G. Laurent, G.L. Lilien & B. Pras (ed.). Research Traditions in Marketing. Boston: Kluwer Academic Publishers. pp. 201–223. ISBN   978-0-7923-9388-7.
  10. Bauckhage, Christian; Kersting, Kristian (2014). "Strong Regularities in Growth and Decline of Popularity of Social Media Services". arXiv: 1406.6529 [cs.SI].
  11. Jain D. C., Mahajan, V. Muller, E. (1995). "An approach for determining optimal sampling for the diffusion of a new product". Journal of Product Innovation Management. 12 (2): 124–135. doi:10.1111/1540-5885.1220124.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Moldovan and Goldenberg (2004). "Cellular automata modeling of resistance to innovations: Effects and solutions". Technological Forecasting and Social Change. 71 (5): 425–442. doi:10.1016/S0040-1625(03)00026-X.
  13. 1 2 Orbach, Yair (2022). Forecasting the Dynamics of Market and Technology. Israel: Ariel University Press. pp. 153–155. ISBN   978-965-7632-40-6.
  14. "Google Scholar".
  15. Kharrazi, Hadi; Gonzalez, Claudia P; Lowe, Kevin B; Huerta, Timothy R; Ford, Eric W (2018-08-07). "Forecasting the Maturation of Electronic Health Record Functions Among US Hospitals: Retrospective Analysis and Predictive Model". Journal of Medical Internet Research. 20 (8): e10458. doi: 10.2196/10458 . ISSN   1438-8871. PMC   6104443 . PMID   30087090.
  16. Dunn, Adam G; Braithwaite, Jeffrey; Gallego, Blanca; Day, Richard O; Runciman, William; Coiera, Enrico (2012-08-10). "Nation-scale adoption of new medicines by doctors: an application of the Bass diffusion model". BMC Health Services Research. 12 (1): 248. doi: 10.1186/1472-6963-12-248 . ISSN   1472-6963. PMC   3441328 . PMID   22876867.
  17. "Voluntary, Occupational Pensions", OECD Pensions at a Glance 2005, OECD Pensions at a Glance, OECD, pp. 191–192, 2006-05-03, doi:10.1787/pension_glance-2005-44-en, ISBN   978-92-64-01871-6 , retrieved 2023-09-04
  18. Sultan, Fareena; Farley, John U.; Lehmann, Donald R. (February 1990). "A Meta-Analysis of Applications of Diffusion Models". Journal of Marketing Research. 27 (1): 70–77. doi:10.1177/002224379002700107. ISSN   0022-2437. S2CID   167853623.