Basset force

Last updated

In a body submerged in a fluid, unsteady forces due to acceleration of that body with respect to the fluid, can be divided into two parts: the virtual mass effect and the Basset force.

Contents

The Basset force term describes the force due to the lagging boundary layer development with changing relative velocity (acceleration) of bodies moving through a fluid. [1] The Basset term accounts for viscous effects and addresses the temporal delay in boundary layer development as the relative velocity changes with time. It is also known as the "history" term. The Basset force is difficult to implement and is commonly neglected for practical reasons; however, it can be substantially large when the body is accelerated at a high rate. [2]

This force in an accelerating Stokes flow has been proposed by Joseph Valentin Boussinesq in 1885 and Alfred Barnard Basset in 1888. Consequently, it is also referred to as the Boussinesq–Basset force. [3] [4]

Acceleration of a flat plate

Consider an infinitely large plate started impulsively with a step change in velocity—from 0 to u0—in the direction of the plate–fluid interface plane.

The equation of motion for the fluid—Stokes flow at low Reynolds number—is

where u(y,t) is the velocity of the fluid, at some time t, parallel to the plate, at a distance y from the plate, and vc is the kinematic viscosity of the fluid (c~continuous phase). The solution to this equation is, [5]

where erf and erfc denote the error function and the complementary error function, respectively.

Assuming that an acceleration of the plate can be broken up into a series of such step changes in the velocity, it can be shown[ citation needed ] that the cumulative effect on the shear stress on the plate is

where up(t) is the velocity of the plate, ρc is the mass density of the fluid, and μc is the viscosity of the fluid.

Acceleration of a spherical particle

Boussinesq (1885) and Basset (1888) found that the force F on an accelerating spherical particle in a viscous fluid is [3] [4] [6] [7]

where D is the particle diameter, and u and v are the fluid and particle velocity vectors, respectively.

See also

Related Research Articles

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

The vorticity equation of fluid dynamics describes evolution of the vorticity ω of a particle of a fluid as it moves with its flow, that is, the local rotation of the fluid . The equation is:

Four-momentum

In special relativity, four-momentum is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

In 1851, George Gabriel Stokes derived an expression, now known as Stokes law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

Boundary layer

In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The liquid or gas in the boundary layer tends to cling to the surface.

In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-driven flow. It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. Sound waves are impossible/neglected when the Boussinesq approximation is used since sound waves move via density variations.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. Named after William Froude, the Froude number is based on the speed–length ratio which he defined as:

Stokes flow Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature this type of flow occurs in the swimming of microorganisms, sperm and the flow of lava. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology.

In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously. For simplicity this can be modeled as some volume of fluid moving with the object, though in reality "all" the fluid will be accelerated, to various degrees.

Shallow water equations Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

Hydrodynamic stability

In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.

Reynolds number Dimensionless quantity used to help predict fluid flow patterns

The Reynolds number helps predict flow patterns in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. Reynolds numbers are an important dimensionless quantity in fluid mechanics.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

In fluid dynamics, the Basset–Boussinesq–Oseen equation describes the motion of – and forces on – a small particle in unsteady flow at low Reynolds numbers. The equation is named after Joseph Valentin Boussinesq, Alfred Barnard Basset and Carl Wilhelm Oseen.

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

Stokes problem

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow where Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

References

  1. C. Crowe et al., Multiphase flows with droplets and particles, CRC Press, 1998, ISBN   0-8493-9469-4, p. 81
  2. R.W. Johnson, The handbook of fluid dynamics, CRC Press, 1998, ISBN   0-8493-2509-9, pp. 18–3
  3. 1 2 F. Candelier; J. R. Angilella; M. Souhar (2004), "On the effect of the Boussinesq–Basset force on the radial migration of a Stokes particle in a vortex", Physics of Fluids, 16 (5): 1765–1776, Bibcode:2004PhFl...16.1765C, doi:10.1063/1.1689970
  4. 1 2 E. E. Michaelides (2003), "Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops—The Freeman Scholar Lecture", Journal of Fluids Engineering, 125 (2): 209–238, doi:10.1115/1.1537258
  5. F. M. White (2006) [2006], Viscous fluid flow, New York: McGraw Hill, Chapter 3
  6. J. V. Boussinesq (1885), "Sur la résistance qu'oppose un fluide indéfini au repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables", Comptes Rendus de l'Académie des Sciences, 100: 935–937
  7. A. B. Basset (1961) [1888], Treatise on hydrodynamics, vol. 2, Cambridge: Deighton, Bell and Co., Chapter 22