Bed of nails defense

Last updated

The bed of nails defense and the related pebble fan defense are anti-ballistic missile concepts intended to defend missile silos against attack.

Contents

The bed of nails consists of a field of 2-metre (7 ft) long steel rebars rising vertically out of the ground in a pattern in front of the silo to be defended. Warheads aimed at missile silos will hit at least one of the rebars before hitting the ground, potentially destroying the warhead before it can trigger. The pebble fan is a similar concept consisting of a long strip of gunpowder topped with steel balls which would be triggered to fly into the air and produce a "curtain" of pellets.

Although neither system is wholly effective, compared with other missile defenses they cost very little to build, and are effective enough to increase the number of failed attacks and thus demand a larger number of warheads be expended in any attack on the silo – leaving the attacker fewer warheads to use on other targets. Moreover, the results of a counterforce attack would be much less predictable, making such an attack less valuable.

The question of the survivability of the Minuteman missile force was repeatedly raised by the Department of Defense (DOD) after 1969. Although these simple protective measures could be deployed rapidly and for almost no cost, there was practically no interest on the part of the DOD or US Air Force to do so. Much of this appears to be due to the desire to replace Minuteman with the MX missile.

Counterforce attacks

Modern ICBM reentry vehicles (RVs) are shaped like a cone to have low hypersonic drag. This reduces the time they spend flying through the atmosphere during reentry, lowering the effect of unknown winds, and reducing the time they are vulnerable to counterattack. [1] For instance, a high-drag RV falling at about 100 metres per second (330 ft/s) would take a minute to cross the last 6 kilometres (3.7 mi) of the atmosphere, in a 30-kilometre-per-hour (19 mph) wind, the RV would be blown off course by 500 metres (1,600 ft). At that speed, it would also be a target for conventional short-range anti-aircraft guns like the M61 Vulcan. [2]

To destroy a Minuteman missile silo, a 1 MT explosion has to take place within about 500 metres (1,600 ft) with enough of the explosion's energy going into the ground to be effective. This demands the warhead explode at a very low altitude, ideally around 250 metres (800 ft). In the early 1970s, Soviet RVs were thought to have accuracy on the order of 1 nautical mile (1.9 km; 1.2 mi), just enough to get one into the lethal radius if two were fired at every silo. [1]

After travelling in a ballistic path, enemy RVs would approach the silos from the north at an elevation angle of about 22 degrees above the horizon. While the accuracy of the guidance system is enough to get them within range in terms of ground radius, that same accuracy is far too low to ensure it would be at the correct altitude as it passed over the silo. Some form of direct measurement of altitude would be needed. [3]

Assume one uses a barometer-type altimeter set to trigger at 250 metres; if the sensor is 1% inaccurate in measuring altitude based on a nominal 14.7 psi (1,010 mbar) atmospheric pressure, that represents an altitude difference of 120 metres (390 ft). This would still be lethal in terms of altitude. However, travelling at a 22 degree angle means that the time it takes to cross that 120-metre altitude inaccuracy will have it move 250 metres (820 ft) laterally, which may take it outside the lethal radius. [4]

Another possibility is to use a radio altimeter or similar device which directly measures the distance to the ground and thus can accurately trigger. The problem with this approach is that the defenders could send out signals from ground-based radios that would either confuse the altimeter or cause it to trigger prematurely. Such a system would be "the height of foolishness given American jamming prowess". [3]

As a result, based on the technology of the 1970s, the only effective way to attack a silo is with contact fuzing. Inaccuracy is that of the RV's internal guidance, but when exploded on the surface it puts the maximum amount of energy into the ground and thus maximizes the lethal radius. [3]

Bed of nails

The bed of nails was a concept that was intended to counter contact-fused weapons. It consisted of a field of conventional steel rebars each 2 metres (7 ft) long and driven into the ground about 0.6 metres (2 ft). They were arranged in lines with the bars 1 metre (3 ft) apart in a row about 600 metres (2,000 ft) long. 150 such rows were arranged 5 metres (16 ft) apart. The result was a field 600 metres wide, 450 metres long, and about 1.4 metres high. [3]

Given the low approach angle, any warhead aimed at the silo that would fall close enough to be lethal would strike one of the rebars and be destroyed. There is a chance that the fuse would hit the bar and trigger, or that the RV would survive the strike and hit the ground and trigger, but these are relatively small possibilities. In an all-out counterforce attack scenario, the system would at least ensure a good population of US missiles would survive, ensuring a counterstrike capability and that mutually assured destruction would not be compromised. [3]

The estimated system cost was about $60,000 per silo in 1976. [3]

Pebble curtain

The closely related pebble curtain concept can be thought of as an active version of the bed of nails. This consists of a 300-metre (1,000 ft) wide stripe of propellant, normally gunpowder, with many 10-gram (0.35 oz) steel pellets on top. In total, there would be about 10 tons of pellets, costing about $2,000, and 1 ton of propellant. When triggered, the pellets are thrown vertically into the air, forming a "curtain" of balls. Like the bed of nails, an RV hitting one of these pellets would likely be destroyed. The main advantage of this system is that as it is buried, it is much more difficult to destroy. [3]

Unlike the bed of nails, which is entirely passive, the pebble curtain would have to be triggered at the right moment. This would normally be accomplished by placing a radar a short distance north of the silo. As the radar is looking up at the side of the RV as it passes, the return is some 1,000 to 10,000 times greater than looking at it nose-on. This means even a very small radar system would have the required performance. [3] If the balls are replaced by small darts, the amount of propellant is reduced and the vertical coverage increases, a concept known as a porcupine. It is otherwise identical in concept. [5]

Countermeasures

There is a simple way to defeat these systems, although it is at the cost of adding one more warhead to the attack. In this system, two warheads would be aimed at the silo, one with a barometer-type altimeter that arrives first, and then a second that is contact fused. The goal of the first warhead is to explode above the silo and flatten the bed of nails. This does not require high accuracy and thus a barometer would work. The second RV would then be able to contact fuse. [3]

The pebble bed, being buried, is much more robust and would likely survive such an explosion. But because the defense cannot know what any particular warhead is doing, any RV approaching the silo would require the system to be triggered. After a short time, the pellets fall back to the ground and the following warheads will not be intercepted. [3]

It was assumed that two warheads would need to be aimed at every US silo to ensure at least one would hit close enough to be lethal. Because the dust thrown up by one warhead will destroy any following behind, both have to impact as close as possible in time. Thus one could not use one of the two existing RVs aimed at the silo for this purpose, a third dedicated to this role would be needed. However, that first warhead is not attacking the silo and does not have to be very accurate, a single warhead would be enough to ensure this part of the attack worked. Thus, adding these defenses might demand three warheads per silo rather than two. [6]

Never built

From 1969, the US Department of Defense (DOD) began to raise the concern that future Soviet RVs, from the 1970s, would be powerful and accurate enough to attack the Minuteman missile force. They began to study new solutions to ensure the ICBM force would survive such an attack in enough numbers to ensure that an effective counterattack would be possible. [7] This led to the MX missile project and its many changes in basing strategy as the nature of the threat changed. [8]

Despite the DODs comments on the pressing nature of the problem, and the fact that the bed of nails could be deployed immediately and at low cost, the DOD and US Air Force expressed almost no interest in doing so. At the time the concept was proposed, it was noted that "Such systems, perhaps because of the old-fashioned technology employed or because they are incapable of defending a large spectrum of targets, arouse little interest within the Defense Department. This is surprising in the view of the enormous emphasis given by the Secretaries of Defence, among others, since 1969 to the question of Minuteman vulnerability." [9] He later added that the lack of interest was likely due to such a system making the advancement of the MX more difficult to justify. [10]

The only comments about the systems were from the Ballistic Missile Defense Agency deputy program manager, who stated that the concepts were "difficult to synthesize and still meet the criteria of low cost, rapid deployability and adequate effectiveness." [5]

Related Research Articles

<span class="mw-page-title-main">LGM-30 Minuteman</span> American ICBM, in service

The LGM-30 Minuteman is an American land-based intercontinental ballistic missile (ICBM) in service with the Air Force Global Strike Command. As of 2024, the LGM-30G is the only land-based ICBM in service in the United States and represents the land leg of the U.S. nuclear triad, along with the Trident II submarine-launched ballistic missile (SLBM) and nuclear weapons carried by long-range strategic bombers.

<span class="mw-page-title-main">LGM-118 Peacekeeper</span> Intercontinental ballistic missile

The LGM-118 Peacekeeper, originally known as the MX for "Missile, Experimental", was a MIRV-capable intercontinental ballistic missile (ICBM) produced and deployed by the United States from 1985 to 2005. The missile could carry up to twelve Mark 21 reentry vehicles, each armed with a 300-kiloton W87 warhead. Initial plans called for building and deploying 100 MX ICBMs, but budgetary concerns limited the final procurement; only 50 entered service. Disarmament treaties signed after the Peacekeeper's development led to its withdrawal from service in 2005.

<span class="mw-page-title-main">START II</span> 1993 nuclear arms reduction treaty between the US and Russia

START II was a bilateral treaty between the United States and Russia on the Reduction and Limitation of Strategic Offensive Arms. It was signed by US President George H. W. Bush and Russian President Boris Yeltsin on 3 January 1993, banning the use of multiple independently targetable re-entry vehicles (MIRVs) on intercontinental ballistic missiles (ICBMs). Hence, it is often cited as the De-MIRV-ing Agreement.

<span class="mw-page-title-main">R-36 (missile)</span> Type of intercontinental ballistic missile designed by the Soviet Union

The R-36 is a family of intercontinental ballistic missiles (ICBMs) and space launch vehicles (Tsyklon) designed by the Soviet Union during the Cold War. The original R-36 was deployed under the GRAU index 8K67 and was given the NATO reporting name SS-9 Scarp. It was able to carry three warheads and was the first Soviet MRV missile. The later version, the R-36M, also known as RS20, was produced under the GRAU designations 15A14 and 15A18 and was given the NATO reporting name SS-18 Satan. This missile was viewed by certain United States analysts as giving the Soviet Union first strike advantage over the U.S., particularly because of its rapid silo-reload ability, very heavy throw weight and extremely large number of re-entry vehicles. Some versions of the R-36M were deployed with 10 warheads and up to 40 penetration aids and the missile's high throw-weight made it theoretically capable of carrying more warheads or penetration aids. Contemporary U.S. missiles, such as the Minuteman III, carried up to three warheads at most.

<span class="mw-page-title-main">Safeguard Program</span> System designed to protect U.S. missile silos

The Safeguard Program was a U.S. Army anti-ballistic missile (ABM) system designed to protect the U.S. Air Force's Minuteman ICBM silos from attack, thus preserving the US's nuclear deterrent fleet. It was intended primarily to protect against the very small Chinese ICBM fleet, limited Soviet attacks and various other limited-launch scenarios. A full-scale attack by the Soviets would easily overwhelm it. It was designed to allow gradual upgrades to provide similar lightweight coverage over the entire United States over time.

<span class="mw-page-title-main">Maneuverable reentry vehicle</span> Ballistic missile whose warhead capable of changing trajectory

The maneuverable reentry vehicle is a type of warhead for ballistic missiles that is capable of maneuvering and changing its trajectory.

<span class="mw-page-title-main">Sprint (missile)</span> Anti-ballistic missile

The Sprint was a two-stage, solid-fuel anti-ballistic missile (ABM), armed with a W66 enhanced-radiation thermonuclear warhead used by the United States Army during 1975–76. It was designed to intercept incoming reentry vehicles (RV) after they had descended below an altitude of about 60 kilometres (37 mi), where the thickening air stripped away any decoys or radar reflectors and exposed the RV to observation by radar. As the RV would be traveling at about 5 miles per second, Sprint needed to have phenomenal performance to achieve an interception in the few seconds before the RV reached its target.

<span class="mw-page-title-main">W71</span> American thermonuclear weapon

The W71 nuclear warhead was a US thermonuclear warhead developed at Lawrence Livermore National Laboratory in California and deployed on the LIM-49A Spartan missile, a component of the Safeguard Program, an anti-ballistic missile (ABM) defense system briefly deployed by the US in the 1970s.

<span class="mw-page-title-main">W62</span> American thermonuclear warhead designed in the late 1960s

The W62 was an American thermonuclear warhead designed in the 1960s and manufactured from March 1970 to June 1976. Used on some Minuteman III ICBMs, it was partially replaced by the W78 starting in December 1979, and fully replaced by W87 warheads removed from MX Peacekeeper missiles and retired in 2010.

Dense Pack is a strategy for basing intercontinental ballistic missiles (ICBMs) for the purpose of maximizing their survivability in case of a surprise nuclear first strike on their silos conducted by a hostile foreign power. The strategy was developed under the Reagan administration as a means of safeguarding America's inventory of MX missiles during the final decade of the Cold War. It was never used; MX was deployed in existing silos and then removed from service as the Cold War ended.

<span class="mw-page-title-main">Missile launch facility</span> Underground structure for the storage and launching of intercontinental ballistic missiles

A missile launch facility, also known as an underground missile silo, launch facility (LF), or nuclear silo, is a vertical cylindrical structure constructed underground, for the storage and launching of intercontinental ballistic missiles (ICBMs), intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs). Similar facilities can be used for anti-ballistic missiles (ABMs).

In nuclear strategy, a counterforce target is one that has a military value, such as a launch silo for intercontinental ballistic missiles, an airbase at which nuclear-armed bombers are stationed, a homeport for ballistic missile submarines, or a command and control installation.

<span class="mw-page-title-main">Nike Zeus</span> Type of anti-ballistic missile

Nike Zeus was an anti-ballistic missile (ABM) system developed by the United States Army during the late 1950s and early 1960s that was designed to destroy incoming Soviet intercontinental ballistic missile warheads before they could hit their targets. It was designed by Bell Labs' Nike team, and was initially based on the earlier Nike Hercules anti-aircraft missile. The original, Zeus A, was designed to intercept warheads in the upper atmosphere, mounting a 25 kiloton W31 nuclear warhead. During development, the concept changed to protect a much larger area and intercept the warheads at higher altitudes. This required the missile to be greatly enlarged into the totally new design, Zeus B, given the tri-service identifier XLIM-49, mounting a 400 kiloton W50 warhead. In several successful tests, the B model proved itself able to intercept warheads, and even satellites.

<span class="mw-page-title-main">Nike-X</span> Anti-ballistic missile system

Nike-X was an anti-ballistic missile (ABM) system designed in the 1960s by the United States Army to protect major cities in the United States from attacks by the Soviet Union's intercontinental ballistic missile (ICBM) fleet during the Cold War. The X in the name referred to its experimental basis and was supposed to be replaced by a more appropriate name when the system was put into production. This never came to pass; in 1967 the Nike-X program was canceled and replaced by a much lighter defense system known as Sentinel.

<span class="mw-page-title-main">Sentinel program</span> Proposed US Army anti-ballistic missile system

Sentinel was a proposed US Army anti-ballistic missile (ABM) system designed to provide a light layer of protection over the entire United States, able to defend against small ICBM strikes like those expected from China, or accidental launches from the USSR or other states. The system would have seventeen bases, each centered on its Missile Site Radar (MSR) and a computerized command center buried below it. The system was supported by a string of five long-range Perimeter Acquisition Radars (PAR) spread across the US/Canada border area and another in Alaska. The primary weapon was the long-range Spartan missile, with short range Sprint missiles providing additional protection near US ICBM fields and PAR sites. The system would initially have a total of 480 Spartan and 192 Sprint missiles.

Nuclear blackout, also known as fireball blackout or radar blackout, is an effect caused by explosions of nuclear weapons that disturbs radio communications and causes radar systems to be blacked out or heavily refracted so they can no longer be used for accurate tracking and guidance. Within the atmosphere, the effect is caused by the large volume of ionized air created by the energy of the explosion, while above the atmosphere it is due to the action of high-energy beta particles released from the decaying bomb debris. At high altitudes, the effect can spread over large areas, hundreds of kilometers. The effect slowly fades as the fireball dissipates.

<span class="mw-page-title-main">Sentry program</span> Proposed United States anti-ballistic missile program

Sentry, known for most of its lifetime as LoADS for Low Altitude Defense System, was a short-range anti-ballistic missile (ABM) design made by the US Army during the 1970s. It was proposed as a defensive weapon that would be used in concert with the MX missile, a US Air Force ICBM that was under development.

Swarmjet was an extremely short-range single-shot anti-ballistic missile (ABM) system proposed by the United States as a defensive measure during the development of the MX missile. It consisted of a launcher containing thousands of spin-stabilized unguided rockets that would be fired into the path of an enemy nuclear warhead, enough that it would be highly likely one of the rockets would hit the warhead and destroy it.

Dust defense, sometimes called environmental defense, was a proposed anti-ballistic missile (ABM) system considered for protecting both Minuteman and MX Peacekeeper missile silos from Soviet attack.

<span class="mw-page-title-main">Hardpoint (missile defense)</span> Proposed anti-ballistic missile system

Hardpoint was a proposed short-range anti-ballistic missile (ABM) system conceived by ARPA and developed by the US Army under ARPA's Project Defender program. Hardpoint was designed to exploit the relatively low accuracy that Soviet ICBMs had, which would make destroying missile silos difficult. The idea was to only shoot at warheads which would be expected to impact within lethal distance of silos, ignoring the rest and allowing them to hit the ground. This acted as a force multiplier, allowing a small number of interceptors to offset a large number of Soviet missiles.

References

Citations

  1. 1 2 Garwin 1976, p. 53.
  2. Garwin 1976, p. 55.
  3. 1 2 3 4 5 6 7 8 9 10 Garwin 1976, p. 54.
  4. Garwin 1976, pp. 53–54.
  5. 1 2 Medalia 1981, p. 33.
  6. Garwin 1984, p. 392.
  7. Garwin 1976, p. 56.
  8. Boese, Wade (October 2005). "United States Retires MX Missile". Arms Control Today . 35 (8). Arms Control Association: 35–36. ISSN   0196-125X. JSTOR   23627780. LCCN   87656007. OCLC   1017367445. Archived from the original on 27 January 2022. Retrieved 5 July 2022.
  9. Garwin 1976, pp. 55–56.
  10. Garwin 1984, p. 396.

Bibliography