Benz plane

Last updated

In mathematics, a Benz plane is a type of 2-dimensional geometrical structure, named after the German mathematician Walter Benz. The term was applied to a group of objects that arise from a common axiomatization of certain structures and split into three families, which were introduced separately: Möbius planes, Laguerre planes, and Minkowski planes. [1] [2]

Contents

Möbius plane

Classical Mobius plane: 2d/3d model Moebius-2d3d-model.svg
Classical Möbius plane: 2d/3d model

Starting from the real Euclidean plane and merging the set of lines with the set of circles to form a set of blocks results in an inhomogeneous incidence structure: three distinct points determine one block, but lines are distinguishable as a set of blocks that pairwise mutually intersect at one point without being tangent (or no points when parallel). Adding to the point set the new point , defined to lie on every line results in every block being determined by exactly three points, as well as the intersection of any two blocks following a uniform pattern (intersecting at two points, tangent or non-intersecting). This homogeneous geometry is called classical inversive geometry or a Möbius plane. The inhomogeneity of the description (lines, circles, new point) can be seen to be non-substantive by using a 3-dimensional model. Using a stereographic projection, the classical Möbius plane may be seen to be isomorphic to the geometry of plane sections (circles) on a sphere in Euclidean 3-space.

Analogously to the (axiomatic) projective plane, an (axiomatic) Möbius plane defines an incidence structure. Möbius planes may similarly be constructed over fields other than the real numbers.

Laguerre plane

classical Laguerre plane: 2d/3d-model Laguerre-2d3d-model.svg
classical Laguerre plane: 2d/3d-model

Starting again from and taking the curves with equations (parabolas and lines) as blocks, the following homogenization is effective: Add to the curve the new point . Hence the set of points is . This geometry of parabolas is called the classical Laguerre plane (Originally it was designed as the geometry of the oriented lines and circles. Both geometries are isomorphic.)

As for the Möbius plane, there exists a 3-dimensional model: the geometry of the elliptic plane sections on an orthogonal cylinder (in ). An abstraction leads (analogously to the Möbius plane) to the axiomatic Laguerre plane.

Minkowski plane

classical Minkowski plane: 2d/3d-model Minkowski-2d3d-model.svg
classical Minkowski plane: 2d/3d-model

Starting from and merging the lines with the hyperbolas in order to get the set of blocks, the following idea homogenizes the incidence structure: Add to any line the point and to any hyperbola the two points . Hence the point set is . This geometry of the hyperbolas is called the classical Minkowski plane.

Analogously to the classical Möbius and Laguerre planes, there exists a 3-dimensional model: The classical Minkowski plane is isomorphic to the geometry of plane sections of a hyperboloid of one sheet (non-degenerate quadric of index 2) in 3-dimensional projective space. Similar to the first two cases we get the (axiomatic) Minkowski plane.

Planar circle geometries or Benz planes

Because of the essential role of the circle (considered as the non-degenerate conic in a projective plane) and the plane description of the original models the three types of geometries are subsumed to planar circle geometries or in honor of Walter Benz, who considered these geometric structures from a common point of view, Benz planes.

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

<span class="mw-page-title-main">Finite geometry</span> Geometric system with a finite number of points

A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

<span class="mw-page-title-main">Fano plane</span> Geometry with 7 points and 7 lines

In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.

<span class="mw-page-title-main">Poincaré half-plane model</span> Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

In algebra, a split complex number has two real number components x and y, and is written , where The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

In projective geometry, a collineation is a one-to-one and onto map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.

<span class="mw-page-title-main">Ovoid (projective geometry)</span>

In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension d ≥ 3. Simple examples in a real projective space are hyperspheres (quadrics). The essential geometric properties of an ovoid are:

  1. Any line intersects in at most 2 points,
  2. The tangents at a point cover a hyperplane, and
  3. contains no lines.

In mathematics, a Minkowski plane is one of the Benz planes.

<span class="mw-page-title-main">Moulton plane</span>

In incidence geometry, the Moulton plane is an example of an affine plane in which Desargues's theorem does not hold. It is named after the American astronomer Forest Ray Moulton. The points of the Moulton plane are simply the points in the real plane R2 and the lines are the regular lines as well with the exception that for lines with a negative slope, the slope doubles when they pass the y-axis.

<span class="mw-page-title-main">Lie sphere geometry</span> Geometry founded on spheres

Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines should be regarded as circles of infinite radius and that points in the plane should be regarded as circles of zero radius.

<span class="mw-page-title-main">Riemann sphere</span> Model of the extended complex plane plus a point at infinity

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

<span class="mw-page-title-main">Laguerre plane</span>

In mathematics, a Laguerre plane is one of the three types of Benz plane, which are the Möbius plane, Laguerre plane and Minkowski plane. Laguerre planes are named after the French mathematician Edmond Nicolas Laguerre.

In mathematics, a Möbius plane is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. The classical example is based on the geometry of lines and circles in the real affine plane.

<span class="mw-page-title-main">Bundle theorem</span>

In Euclidean geometry, the bundle theorem is a statement about six circles and eight points in the Euclidean plane. In general incidence geometry, it is a similar property that a Möbius plane may or may not satisfy. According to Kahn's Theorem, it is fulfilled by "ovoidal" Möbius planes only; thus, it is the analog for Möbius planes of Desargues' Theorem for projective planes.

Spherical wave transformations leave the form of spherical waves as well as the laws of optics and electrodynamics invariant in all inertial frames. They were defined between 1908 and 1909 by Harry Bateman and Ebenezer Cunningham, with Bateman giving the transformation its name. They correspond to the conformal group of "transformations by reciprocal radii" in relation to the framework of Lie sphere geometry, which were already known in the 19th century. Time is used as fourth dimension as in Minkowski space, so spherical wave transformations are connected to the Lorentz transformation of special relativity, and it turns out that the conformal group of spacetime includes the Lorentz group and the Poincaré group as subgroups. However, only the Lorentz/Poincaré groups represent symmetries of all laws of nature including mechanics, whereas the conformal group is related to certain areas such as electrodynamics. In addition, it can be shown that the conformal group of the plane is isomorphic to the Lorentz group.

Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous. As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines.

The Laguerre transformations or axial homographies are an analogue of Möbius transformations over the dual numbers. When studying these transformations, the dual numbers are often interpreted as representing oriented lines on the plane. The Laguerre transformations map lines to lines, and include in particular all isometries of the plane.

References

  1. W. Benz, Vorlesungen über Geomerie der Algebren, Springer (1973)
  2. F. Buekenhout (ed.), Handbook of Incidence Geometry , Elsevier (1995) ISBN   0-444-88355-X