Bessel potential Last updated October 11, 2025 Mathematical potential
In mathematics , the Bessel potential is a potential (named after Friedrich Wilhelm Bessel ) similar to the Riesz potential but with better decay properties at infinity.
If s is a complex number with positive real part then the Bessel potential of order s is the operator
( I − Δ ) − s / 2 {\displaystyle (I-\Delta )^{-s/2}} where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.
Yukawa potentials are particular cases of Bessel potentials for s = 2 {\displaystyle s=2} in the 3-dimensional space.
Representation in Fourier space The Bessel potential acts by multiplication on the Fourier transforms : for each ξ ∈ R d {\displaystyle \xi \in \mathbb {R} ^{d}}
F ( ( I − Δ ) − s / 2 u ) ( ξ ) = F u ( ξ ) ( 1 + 4 π 2 | ξ | 2 ) s / 2 . {\displaystyle {\mathcal {F}}((I-\Delta )^{-s/2}u)(\xi )={\frac {{\mathcal {F}}u(\xi )}{(1+4\pi ^{2}\vert \xi \vert ^{2})^{s/2}}}.} Asymptotics At the origin, one has as | x | → 0 {\displaystyle \vert x\vert \to 0} , [ 4]
G s ( x ) = Γ ( d − s 2 ) 2 s π s / 2 | x | d − s ( 1 + o ( 1 ) ) if 0 < s < d , {\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {d-s}{2}})}{2^{s}\pi ^{s/2}\vert x\vert ^{d-s}}}(1+o(1))\quad {\text{ if }}0<s<d,} G d ( x ) = 1 2 d − 1 π d / 2 ln 1 | x | ( 1 + o ( 1 ) ) , {\displaystyle G_{d}(x)={\frac {1}{2^{d-1}\pi ^{d/2}}}\ln {\frac {1}{\vert x\vert }}(1+o(1)),} G s ( x ) = Γ ( s − d 2 ) 2 s π s / 2 ( 1 + o ( 1 ) ) if s > d . {\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {s-d}{2}})}{2^{s}\pi ^{s/2}}}(1+o(1))\quad {\text{ if }}s>d.} In particular, when 0 < s < d {\displaystyle 0<s<d} the Bessel potential behaves asymptotically as the Riesz potential .
At infinity, one has, as | x | → ∞ {\displaystyle \vert x\vert \to \infty } , [ 5]
G s ( x ) = e − | x | 2 d + s − 1 2 π d − 1 2 Γ ( s 2 ) | x | d + 1 − s 2 ( 1 + o ( 1 ) ) . {\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{2^{\frac {d+s-1}{2}}\pi ^{\frac {d-1}{2}}\Gamma ({\frac {s}{2}})\vert x\vert ^{\frac {d+1-s}{2}}}}(1+o(1)).} References Duduchava, R. (2001) [1994], "Bessel potential operator" , Encyclopedia of Mathematics , EMS Press Grafakos, Loukas (2009), Modern Fourier analysis , Graduate Texts in Mathematics , vol. 250 (2nd ed.), Berlin, New York: Springer-Verlag , doi :10.1007/978-0-387-09434-2 , ISBN 978-0-387-09433-5 , MR 2463316 , S2CID 117771953 Hedberg, L.I. (2001) [1994], "Bessel potential space" , Encyclopedia of Mathematics , EMS Press Solomentsev, E.D. (2001) [1994], "Bessel potential" , Encyclopedia of Mathematics , EMS Press Stein, Elias (1970), Singular integrals and differentiability properties of functions , Princeton, NJ: Princeton University Press , ISBN 0-691-08079-8 This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.