Biological methanation

Last updated

Biological methanation (also: biological hydrogen methanation (BHM) or microbiological methanation) is a conversion process to generate methane by means of highly specialized microorganisms (Archaea) within a technical system. This process can be applied in a power-to-gas system to produce biomethane and is appreciated as an important storage technology for variable renewable energy in the context of energy transition. [1] This technology was successfully implemented at a first power-to-gas plant of that kind in the year 2015. [2]

Contents

Disambiguation

Biological methanation contains the principle of the so-called methanogenesis, a specific, anaerobic metabolic pathway where hydrogen and carbon dioxide are converted into methane. By analogy with the biological process, a chemical-catalytic process, also known as Sabatier reaction, exists.

Principle of function

Numerous and common microorganisms within the domain Archaea convert the compounds hydrogen (H2) and carbon dioxide (CO2) into methane in a bio-catalytic way. The therefore relevant metabolic processes run under strictly anaerobic conditions and in an aqueous environment. [3] [4]

Suitable Archaea for this process are so called Methanogens with a hydrogenotrophical metabolism. They are primary to be allocated among the order of Methanopyrales, Methanobacteriales, Methanococcales and Methanomicrobiales. [5] [6] These Methanogens are naturally adapted for different anaerobic environments and conditions. Basically, the Methanogens need aqueous, anoxic conditions with min. 50% water and a redox potential of less than −330 mV. [7] The Methanogens prefer lightly acidic to alkali living conditions and are found in a very wide temperature range from 4 to 110 °C. [8]

Potential applications of biological methanation

Biological methanation can take place as an in-situ process within a fermenter (see fig. 3.1) or as an ex-situ process in a separate reactor (see fig. 3.2 to 3.4).

Biological methanation in a biogas or clarification plant with a gas processing system (in-situ process) Hydrogen is added directly to the fermentation material during a fermentation process and the biological methanation takes place subsequently in the thoroughly gassed fermentation material. The gas is, depending on its pureness, cleaned up to methane before the infeed into the gas grid.

Biological methanation at a biogas or clarification plant without a gas processing system (ex-situ process) Biological methanation takes place in a separate methanation plant. The gas is completely converted into methane before the infeed into the gas grid.

Biological methanation at a biogas or clarification plant with a gas processing system (ex-situ process) The carbon dioxide, produced in a gas processing system, is converted into methane in a separate methanation plant, by adding hydrogen and can then be fed into the gas grid.

Biological methanation in combination with an arbitrary carbon dioxide source (ex-situ process) In a separate methanation plant the hydrogen is converted into methane together with carbon dioxide and then fed into the gas grid (stand-alone solution).

Implementation in the field

Since March 2015 the first power-to-gas plant globally is feeding synthetical bio methane, generated by means of biological methanation, into the public gas grid in Allendorf (Eder), Germany. The plant runs with an output rate of 15 Nm3/h, which corresponds to 400,000 kWh per year. With this amount of gas a distance of 750,000 kilometers per year with a CNG-vehicle can be achieved. [9] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Marsh gas</span>

Marsh gas, also known as swamp gas or bog gas, is a mixture primarily of methane and smaller amounts of hydrogen sulfide, carbon dioxide, and trace phosphine that is produced naturally within some geographical marshes, swamps, and bogs.

<span class="mw-page-title-main">Biogas</span> Gases produced by decomposing organic matter

Biogas is a mixture of gases, primarily consisting of methane, carbon dioxide and hydrogen sulphide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, wastewater, and food waste. It is a renewable energy source.

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and in the digestive tracts of animals such as ruminants and many humans, where they are responsible for the methane content of belching in ruminants and flatulence in humans. In marine sediments, the biological production of methane, also termed methanogenesis, is generally confined to where sulfates are depleted, below the top layers. Moreover, methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments. Others are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group phylogenetically distinct from both eukaryotes and bacteria, although many live in close association with anaerobic bacteria. The production of methane is an important and widespread form of microbial metabolism. In anoxic environments, it is the final step in the decomposition of biomass. Methanogenesis is responsible for significant amounts of natural gas accumulations, the remainder being thermogenic.

<span class="mw-page-title-main">Anaerobic digestion</span> Processes by which microorganisms break down biodegradable material in the absence of oxygen

Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.

An acetogen is a microorganism that generates acetate (CH3COO) as an end product of anaerobic respiration or fermentation. However, this term is usually employed in a narrower sense only to those bacteria and archaea that perform anaerobic respiration and carbon fixation simultaneously through the reductive acetyl coenzyme A (acetyl-CoA) pathway (also known as the Wood-Ljungdahl pathway). These genuine acetogens are also known as "homoacetogens" and they can produce acetyl-CoA (and from that, in most cases, acetate as the end product) from two molecules of carbon dioxide (CO2) and four molecules of molecular hydrogen (H2). This process is known as acetogenesis, and is different from acetate fermentation, although both occur in the absence of molecular oxygen (O2) and produce acetate. Although previously thought that only bacteria are acetogens, some archaea can be considered to be acetogens.

Acidogenesis is the second stage in the four stages of anaerobic digestion:

<i>Methanosarcina</i> Genus of archaea

Methanosarcina is a genus of euryarchaeote archaea that produce methane. These single-celled organisms are known as anaerobic methanogens that produce methane using all three metabolic pathways for methanogenesis. They live in diverse environments where they can remain safe from the effects of oxygen, whether on the earth's surface, in groundwater, in deep sea vents, and in animal digestive tracts. Methanosarcina grow in colonies.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

In biology, syntrophy, synthrophy, or cross-feeding is the phenomenon of one species feeding on the metabolic products of another species to cope up with the energy limitations by electron transfer. In this type of biological interaction, metabolite transfer happens between two or more metabolically diverse microbial species that live in close proximity to each other. The growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Thus, syntrophism can be considered as an obligatory interdependency and a mutualistic metabolism between two different bacterial species.

<span class="mw-page-title-main">Fermentation</span> Metabolic process

Fermentation is a metabolic process that produces chemical changes in organic substances through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food production, it may more broadly refer to any process in which the activity of microorganisms brings about a desirable change to a foodstuff or beverage. The science of fermentation is known as zymology.

<span class="mw-page-title-main">Digestate</span> Material remaining after the anaerobic digestion of a biodegradable feedstock

Digestate is the material remaining after the anaerobic digestion of a biodegradable feedstock. Anaerobic digestion produces two main products: digestate and biogas. Digestate is produced both by acidogenesis and methanogenesis and each has different characteristics. These characteristics stem from the original feedstock source as well as the processes themselves.

<span class="mw-page-title-main">Methanobacteria</span> Class of archaea

Methanobacteria is a class of archaeans in the kingdom Euryarchaeota. Several of the classes of the Euryarchaeota are methanogens and the Methanobacteria are one of these classes.

Methanobrevibacter smithii is the predominant archaeon in the microbiota of the human gut. M. smithii has a coccobacillus shape. It plays an important role in the efficient digestion of polysaccharides by consuming the end products of bacterial fermentation. Methanobrevibacter smithii is a single-celled microorganism from the Archaea domain. M. smithii is a methanogen, and a hydrogenotroph that recycles the hydrogen by combining it with carbon dioxide to methane. The removal of hydrogen by M. smithii is thought to allow an increase in the extraction of energy from nutrients by shifting bacterial fermentation to more oxidized end products.

Greenhouse gas emissions from wetlands of concern consist primarily of methane and nitrous oxide emissions. Wetlands are the largest natural source of atmospheric methane in the world, and therefore remain a major area of concern with respect to climate change. They contribute approximately 167 Tg of methane to the atmosphere per year. Wetlands account for approximately 20 percent of atmospheric methane through emissions from soils and plants. Wetlands are characterized by water-logged soils and distinctive communities of plant and animal species that have evolved and adapted to the constant presence of water. This high level of water saturation creates conditions conducive to methane production.

Power-to-gas is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas.

Methanothermococcus okinawensis is a thermophilic, methane-producing archaeon first isolated from deep-sea hydrothermal vent on the western Pacific Ocean. Its cells are highly motile, irregular cocci, with a polar bundle of flagella. Its type strain is IH1T. It grows at an optimal temperature of 60–65 °C and pH of 6.7. It is strictly anaerobic and reduces carbon dioxide with hydrogen to produce methane, but it can also use formate. Research studies indicate that it might be able to survive extreme conditions in solar system's other bodies, such as Saturn's moon Enceladus.

Hydrogenotrophs are organisms that are able to metabolize molecular hydrogen as a source of energy.

Methanogens are a group of microorganisms that produce methane as a byproduct of their metabolism. They play an important role in the digestive system of ruminants. The digestive tract of ruminants contains four major parts: rumen, reticulum, omasum and abomasum. The food with saliva first passes to the rumen for breaking into smaller particles and then moves to the reticulum, where the food is broken into further smaller particles. Any indigestible particles are sent back to the rumen for rechewing. The majority of anaerobic microbes assisting the cellulose breakdown occupy the rumen and initiate the fermentation process. The animal absorbs the fatty acids, vitamins and nutrient content on passing the partially digested food from the rumen to the omasum. This decreases the pH level and initiates the release of enzymes for further breakdown of the food which later passes to the abomasum to absorb remaining nutrients before excretion. This process takes about 9–12 hours.

The sulfate-methane transition zone (SMTZ) is a zone in oceans, lakes, and rivers found below the sediment surface in which sulfate and methane coexist. The formation of a SMTZ is driven by the diffusion of sulfate down the sediment column and the diffusion of methane up the sediments. At the SMTZ, their diffusion profiles meet and sulfate and methane react with one another, which allows the SMTZ to harbor a unique microbial community whose main form of metabolism is anaerobic oxidation of methane (AOM). The presence of AOM marks the transition from dissimilatory sulfate reduction to methanogenesis as the main metabolism utilized by organisms.

References

  1. Sterner, M. und Stadler, I.: Energiespeicher – Bedarf, Technologien, Integration. Springer Verlag, Berlin, 2014
  2. "MicrobEnergy GmbH – Viessmann Group". 9 February 2018.
  3. Fuchs, G. und Schlegel, H.G.: Allgemeine Mikrobiologie. Georg Thieme Verlag, Stuttgart, 2007
  4. Madigan, M., Martinko, J., Bender, K., Buckley, d. und Stahl, D.: Brock – Biology of Microorganisms. Pearson Education, München, 2009
  5. Bischofberger, W., Dichtl, N., Rosenwinkel, K.-H. und Seyfried, C.F.: Anaerobtechnik. Springer-Verlag, Heidelberg, 2005
  6. Ferry, J.G.: The chemical biology of methanogenesis. Planetary and Space Science (2010) No. 58, P. 1775-1783
  7. Bo Young, J., Kim, S. Y., Park, Y. K. und Park, D. H.: Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using Electrochemical Bioreactor. J. Microbiol. Biotechnol 19 (12) (2009), P.1665-1671
  8. Boone, D. R., Johnson, R. L. und Liu, Y.: Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake. Applied and environmental microbiology 55 (1989) No. 7, P. 1735-1741
  9. "Archived copy". Archived from the original on 2018-02-10. Retrieved 2018-01-17.{{cite web}}: CS1 maint: archived copy as title (link)
  10. Brackel, Benjamin von (10 February 2018). "Helfer für die Energiewende" via Sueddeutsche.de.
  11. GmbH, DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag. "gwf – Gas+Energie – News – Viessmann hat Power-to-Gas-Anlage in Betrieb genommen". www.di-verlag.de.