Biosphere3D

Last updated
Biosphere3D
Developer(s) Zuse Institute Berlin, Lenné3D
Initial releaseMay 21, 2007
Stable release
2019.0217.17 / February 17, 2019
Repository sourceforge.net/projects/biosphere3d/
Written in C++
Operating system Windows
Available in English
Type Virtual globe
License MPL
Website biosphere3d.org

Biosphere3D is an open-source project that targets interactive landscape scenery rendering based on a virtual globe. The software system supports multiple scales but focuses primarily on the creation of realistic views from eye-level (First Person View) or near ground level. The software is released under the MPL license and developed by Zuse Institute Berlin, Lenné3D and the open-source community for use on personal computers.

Contents

Overview

Biosphere3D was initially developed in the Visualization and Data Analysis department at the Zuse Institute Berlin as part of a research project and it was first released in 2007. Applications are in Landscape planning, Landscape architecture, visual impact assessment, e.g. of Wind farms, Power stations, Land use planning, Archaeology, Urban planning, and forestry enabling to wander through landscape scenarios or virtually reconstructed historical landscape and gardens. Biosphere3D, initially funded by the Federal Ministry of Education and Research (Germany) within the R&D project ‘SILVISIO’, has been designed as a pure landscape visualization system. Modeling of landscape features occurs in external applications such as Geographic information systems (GIS), simulation models with GIS data output, and 3D CAD tools such as SketchUp. Users can interact with the globe by rotating it, tilting the view, and zooming in and out. 3D scenes are composed based on the import of digital elevation model (DEM) data, image raster files, ESRI shapefiles, Collada and kml/kmz files, e.g. from SketchUp or Trimble 3D Warehouse.

The data structures used by Biosphere3D require no or short pre-processing steps; so all data can be modified on the fly with minimal turn around times. This facilitates quick 3D scene generation and a semi-interactive workflow.

See the Biosphere3D Help on how to get started with the software.

Features

Computer requirements

Requirements depend on project size and used settings. A good starting point is a multi core processor, 8 GB RAM and a Graphics processing unit supporting OpenGL 4.0 with 2 GB memory. Large projects with detailed models and many textures may need 24 GB RAM and 11 GB graphic memory or more and a matching CPU. For the released beta on SourceForge, a x64 bit Windows with up-to-date drivers is needed. You can also use the OpenGL Extensions Viewer [1] to verify that OpenGL 4.0 is supported.

Community

Source code is OS portable (Source code to work with many OS platforms) but currently, only Windows x86 and x64 is supported. The source code is hosted as a git repository on SourceForge. Read-only access is available for everyone. Write access is granted on request.

See also

Related Research Articles

A GIS file format is a standard of encoding geographical information into a computer file. They are created mainly by government mapping agencies or by GIS software developers.

Scientific visualization interdisciplinary branch of science concerned with presenting scientific data visually

Scientific visualization is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data.

Volume rendering 3D rendering techniques

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

NASA WorldWind Open-source virtual globe developed by NASA

NASA WorldWind is an open-source virtual globe. It was first developed by NASA in 2003 for use on personal computers and then further developed in concert with the open source community since 2004. As of 2017, a web-based version of WorldWind is available online. An Android version is also available.

COLLADA is an interchange file format for interactive 3D applications. It is managed by the nonprofit technology consortium, the Khronos Group, and has been adopted by ISO as a publicly available specification, ISO/PAS 17506.

LandSerf is a free geographic information system for editing, processing and visualizing spatial data. It is particularly suited to handling Digital Digital Elevation Models (DEMs) and other surface models. It is written in Java and runs on Windows, Mac OS and Linux platforms.

GRIB is a concise data format commonly used in meteorology to store historical and forecast weather data. It is standardized by the World Meteorological Organization's Commission for Basic Systems, known under number GRIB FM 92-IX, described in WMO Manual on Codes No.306. Currently there are three versions of GRIB. Version 0 was used to a limited extent by projects such as TOGA, and is no longer in operational use. The first edition is used operationally worldwide by most meteorological centers, for Numerical Weather Prediction output (NWP). A newer generation has been introduced, known as GRIB second edition, and data is slowly changing over to this format. Some of the second-generation GRIB are used for derived product distributed in Eumetcast of Meteosat Second Generation. Another example is the NAM model.

Universal 3D (U3D) is a compressed file format standard for 3D computer graphics data.

Shapefile

The shapefile format is a geospatial vector data format for geographic information system (GIS) software. It is developed and regulated by Esri as a mostly open specification for data interoperability among Esri and other GIS software products. The shapefile format can spatially describe vector features: points, lines, and polygons, representing, for example, water wells, rivers, and lakes. Each item usually has attributes that describe it, such as name or temperature.

ArcGIS Geographic information system maintained by Esri

ArcGIS is a geographic information system (GIS) for working with maps and geographic information maintained by the Environmental Systems Research Institute (Esri). It is used for creating and using maps, compiling geographic data, analyzing mapped information, sharing and discovering geographic information, using maps and geographic information in a range of applications, and managing geographic information in a database.

JUMP GIS

JUMP is a Java based vector and raster GIS and programming framework. Current development continues under the OpenJUMP name.

GDAL Translator library for raster and vector geospatial data formats

The Geospatial Data Abstraction Library (GDAL) is a computer software library for reading and writing raster and vector geospatial data formats, and is released under the permissive X/MIT style free software license by the Open Source Geospatial Foundation. As a library, it presents a single abstract data model to the calling application for all supported formats. It may also be built with a variety of useful command line interface utilities for data translation and processing. Projections and transformations are supported by the PROJ library.

MapInfo Pro is a desktop geographic information system (GIS) software product produced by Precisely and used for mapping and location analysis. MapInfo Pro allows users to visualize, analyze, edit, interpret, understand and output data to reveal relationships, patterns, and trends. MapInfo Pro allows users to explore spatial data within a dataset, symbolize features, and create maps.

CommunityViz Extensions to ArcGIS Geographic Information System software

CommunityViz is the name of a group of extensions to ArcGIS Geographic Information System software. CommunityViz is an analysis tool used for, among other applications, urban planning, land use planning, geodesign, transportation planning and resource management applications. It also provides options for 3D visualization in the Scenario 3D and Scenario 360 plugins. CommunityViz also allows users to export and view their work in ArcGIS Online, Google Earth and other KML/KMZ viewers such as ArcGIS Explorer. The software was originally produced by the Orton Family Foundation and in 2005 was handed off to Placeways LLC. In 2017, the software was purchased by City Explained, Inc. where its development continues.

3D city model

A 3D city model is digital model of urban areas that represent terrain surfaces, sites, buildings, vegetation, infrastructure and landscape elements in three-dimensional scale as well as related objects belonging to urban areas. Their components are described and represented by corresponding two-dimensional and three-dimensional spatial data and geo-referenced data. 3D city models support presentation, exploration, analysis, and management tasks in a large number of different application domains. In particular, 3D city models allow "for visually integrating heterogeneous geoinformation within a single framework and, therefore, create and manage complex urban information spaces."

Voreen

Voreen is an open-source volume visualization library and development platform. Through the use of GPU-based volume rendering techniques it allows high frame rates on standard graphics hardware to support interactive volume exploration.

CityEngine 3D modelling software

Esri CityEngine is a three-dimensional (3D) modeling software application developed by Esri R&D Center Zurich and is specialized in the generation of 3D urban environments. With the procedural modeling approach, CityEngine supports the creation of detailed large-scale 3D city models. CityEngine works with architectural object placement and arrangement in the same manner that VUE manages terrain, ecosystems and atmosphere mapping. Unlike the traditional 3D modeling methodology which is using Computer-Aided Design (CAD) tools, CityEngine improves the shape generation via the rule-based system and data sets—similar as the Geographic Information System (GIS). Due to this dominant feature, CityEngine has been broadly used in academic research or building virtual environments, e.g., urban planning, architecture, visualization, game development, entertainment, archeology, and cultural heritage. After being integrated with the Building Information Model (BIM), CityEngine can visualize the data of buildings in a larger urban context, enhancing its working scenario toward real construction projects.

References

  1. OpenGL Extensions Viewer http://www.realtech-vr.com/glview/

Further reading