Bite force quotient

Last updated

Bite force quotient (BFQ) is a numerical value commonly used to represent the bite force of an animal adjusted for its body mass, while also taking factors like the allometry effects.

Contents

The BFQ is calculated as the regression of the quotient of an animal's bite force in newtons divided by its body mass in kilograms. [1] The BFQ was first applied by Wroe et al. (2005) in a paper comparing bite forces, body masses and prey size in a range of living and extinct mammalian carnivores, later expanded on by Christiansen & Wroe (2007). [2] Results showed that predators that take relatively large prey have large bite forces for their size, i.e., once adjusted for allometry. The authors predicted bite forces using beam theory, based on the directly proportional relationship between muscle cross-sectional area and the maximal force muscles can generate. Because body mass is proportional to volume while muscle force is proportional to area, the relationship between bite force and body mass is allometric. All else being equal, it would be expected to follow a 2/3 power rule. Consequently, small species would be expected to bite harder for their size than large species if a simple ratio of bite force to body mass is used, resulting in bias. Applying the BFQ normalizes the data allowing for fair comparison between species of different sizes in much the same way as an encephalization quotient normalizes data for brain size to body mass comparisons. It is a means for comparison, not an indicator of absolute bite force. In short, if an animal or species has a high BFQ this indicates that it bites hard for its size after controlling for allometry.

Hite et al., [3] who include data from the widest range of living mammals of any bite force regression to date, produce from their regression the BFQ equation:

Or equivalently

where BF = Bite Force (N), and BM = Body Mass (g)

Carnivore BFQs

AnimalBFQ
Aardwolf 77
European badger 109
Asian black bear 44
American black bear 64
Brown bear 78
Domestic cat 67
Cheetah 119
Cougar 108
Coyote 88
Dhole 132
Dingo 125
African wild dog 138
Domestic dog 114
Singing dog 100
Arctic fox 97
Cape genet 48
Gray fox 80
Red fox 92
Gray wolf 136
Brown hyena 123
Spotted hyena 124
Jaguar 134
Jaguarundi 75
Leopard 98
Clouded leopard 137
Lion 128.1
Northern olingo 162
Sand cat 137
Sun bear 160
Least weasel 164
Spotted-tailed quoll 179
Tasmanian devil 181
Tiger 139
Thylacine 166

Table sources (unless otherwise stated): [1] [4] [2] [5]

Sex Differences for BFQ in Canids

In a 2020 paper, the results of an estimation of the BFQ of various canid species separated by sex were published. [6] Below there is a table with the BFQ averaged from the BFQ for each espécimen of each sex and for each species. BFQ coming from a single specimen for each sex in a given species will be marked with an asterisk.

Common NameScientific NameMale BFQFemale BFQ
Short-eared dog Atelocynus microtis120.25144.65
Senegalese wolf Canis lupaster anthus140.66126.24
*Golden jackal *Canis aureus*113.98*113.25
Coyote Canis latrans132.65131.88
Grey wolf Canis lupus130.59141.06
Dingo Canis lupus dingo 133.67127.57
New Guinea singing dog Canis lupus hallstromi130.26107.31
*Red wolf *Canis rufus*182.41*124.33
Ethiopian wolf Canis simensis144.27158.21
Crab-eating fox Cerdocyon thous118.24116.41
Maned wolf Chrysocyon brachyurus131.59112.87
Dhole Cuon alpinus148.80147.85
Side-striped jackal Lupullela adusta111.21107.21
Black-backed jackal Lupullela mesomelas126.95115.11
Culpeo Lycalopex culpaeus128.62120.07
*Darwin's fox *Lycalopex fulvipes*154.63*140.60
South American gray fox Lycalopex griseus135.27124.87
Pampas fox Lycalopex gymnocercus127.1116.76
Sechuran fox Lycalopex sechurae128.84138.14
Hoary fox Lycalopex vetulus123.09122.13
African wild dog Lycaon pictus144.71146.08
Common raccoon dog Nyctereutes procyonoides136.49134.94
Bat-eared fox Otocyon megalotis107.14126.26
Bush dog Speothos venaticus160.28154.63
Gray fox Urocyon cinereoargenteus146.30121.51
Island fox Urocyon littoralis109.27108.22
Bengal fox Vulpes bengalensis128.47139.10
Cape fox Vulpes chama96.9887.21
Arctic fox Vulpes lagopus120.59115.34
Kit fox Vulpes macrotis109.77110.99
Pale fox Vulpes pallida89.4798.21
Rüppell's fox Vulpes ruepellii135.31121.97
Swift fox Vulpes velox122.57120.38
Red fox Vulpes vulpes116.25118.97
Fennec fox Vulpes zerda113129.62

Related Research Articles

<i>Diprotodon</i> Extinct marsupial genus

Diprotodon is an extinct genus of marsupial from the Pleistocene of Australia containing one species, D. optatum. The earliest finds date to 1.77 million to 780,000 years ago but most specimens are dated to after 110,000 years ago. Its remains were first unearthed in 1830 in Wellington Caves, New South Wales, and contemporaneous paleontologists guessed they belonged to rhinos, elephants, hippos or dugongs. Diprotodon was formally described by English naturalist Richard Owen in 1838, and was the first named Australian fossil mammal, and led Owen to become the foremost authority of his time on other marsupials and Australian megafauna, which were enigmatic to European science.

<i>Smilodon</i> Extinct genus of saber-toothed cat

Smilodon is an extinct genus of felids. It is one of the best known saber-toothed predators and prehistoric mammals. Although commonly known as the saber-toothed tiger, it was not closely related to the tiger or other modern cats, belonging to the extinct subfamily Machairodontinae, with an estimated date of divergence from the ancestor of living cats around 20 million years ago. Smilodon was one of the last surviving machairodonts alongside the distantly related Homotherium. Smilodon lived in the Americas during the Pleistocene epoch. The genus was named in 1842 based on fossils from Brazil; the generic name means "scalpel" or "two-edged knife" combined with "tooth". Three species are recognized today: S. gracilis, S. fatalis, and S. populator. The two latter species were probably descended from S. gracilis, which itself probably evolved from Megantereon. The hundreds of specimens obtained from the La Brea Tar Pits in Los Angeles constitute the largest collection of Smilodon fossils.

<span class="mw-page-title-main">Dire wolf</span> Extinct species of canine mammal

The dire wolf is an extinct canine. The dire wolf lived in the Americas during the Late Pleistocene and Early Holocene epochs. The species was named in 1858, four years after the first specimen had been found. Two subspecies are recognized: Aenocyon dirus guildayi and Aenocyon dirus dirus. The largest collection of its fossils has been obtained from the Rancho La Brea Tar Pits in Los Angeles.

<i>Canis</i> Genus of carnivores

Canis is a genus of the Caninae which includes multiple extant species, such as wolves, dogs, coyotes, and golden jackals. Species of this genus are distinguished by their moderate to large size, their massive, well-developed skulls and dentition, long legs, and comparatively short ears and tails.

<i>Thylacoleo</i> Extinct genus of marsupials

Thylacoleo is an extinct genus of carnivorous marsupials that lived in Australia from the late Pliocene to the Late Pleistocene, often known as marsupial lions. They were the largest and last members of the family Thylacoleonidae, occupying the position of apex predator within Australian ecosystems. The largest and last species, Thylacoleo carnifex, approached the weight of a lioness. The estimated average weight for the species ranges from 101 to 130 kg.

<i>Giganotosaurus</i> Carcharodontosaurid dinosaur genus from the late Cretaceous period

Giganotosaurus is a genus of theropod dinosaur that lived in what is now Argentina, during the early Cenomanian age of the Late Cretaceous period, approximately 99.6 to 95 million years ago. The holotype specimen was discovered in the Candeleros Formation of Patagonia in 1993 and is almost 70% complete. The animal was named Giganotosaurus carolinii in 1995; the genus name translates to "giant southern lizard", and the specific name honors the discoverer, Ruben Carolini. A dentary bone, a tooth, and some tracks, discovered before the holotype, were later assigned to this animal. The genus attracted much interest and became part of a scientific debate about the maximum sizes of theropod dinosaurs.

<span class="mw-page-title-main">Brain–body mass ratio</span> Measurement used for rough estimate of the intelligence of an animal

Brain–body mass ratio, also known as the brain–body weight ratio, is the ratio of brain mass to body mass, which is hypothesized to be a rough estimate of the intelligence of an animal, although fairly inaccurate in many cases. A more complex measurement, encephalization quotient, takes into account allometric effects of widely divergent body sizes across several taxa. The raw brain-to-body mass ratio is however simpler to come by, and is still a useful tool for comparing encephalization within species or between fairly closely related species.

Encephalization quotient (EQ), encephalization level (EL), or just encephalization is a relative brain size measure that is defined as the ratio between observed and predicted brain mass for an animal of a given size, based on nonlinear regression on a range of reference species. It has been used as a proxy for intelligence and thus as a possible way of comparing the intelligence levels of different species. For this purpose, it is a more refined measurement than the raw brain-to-body mass ratio, as it takes into account allometric effects. Expressed as a formula, the relationship has been developed for mammals and may not yield relevant results when applied outside this group.

<span class="mw-page-title-main">Geoffroy's cat</span> Small wild cat

Geoffroy's cat is a small wild cat native to the southern and central regions of South America. It is around the size of a domestic cat. It is listed as Least Concern on the IUCN Red List due to it being widespread and abundant over its range.

<span class="mw-page-title-main">Machairodontinae</span> Extinct subfamily of carnivores

Machairodontinae is an extinct subfamily of carnivoran mammals of the family Felidae. They were found in Asia, Africa, North America, South America, and Europe, with the earliest species known from the Middle Miocene, with the last surviving species becoming extinct around Late Pleistocene-Holocene transition.

<span class="mw-page-title-main">Kleiber's law</span> Approximate power law relating animal metabolic rate to mass

Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observation that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 34 power of the animal's mass.

<span class="mw-page-title-main">Allometry</span> Study of the relationship of body size to shape, anatomy, physiology, and behavior

Allometry is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

<i>Thylacosmilus</i> Extinct genus of mammals

Thylacosmilus is an extinct genus of saber-toothed metatherian mammals that inhabited South America from the Late Miocene to Pliocene epochs. Though Thylacosmilus looks similar to the "saber-toothed cats", it was not a felid, like the well-known North American Smilodon, but a sparassodont, a group closely related to marsupials, and only superficially resembled other saber-toothed mammals due to convergent evolution. A 2005 study found that the bite forces of Thylacosmilus and Smilodon were low, which indicates the killing-techniques of saber-toothed animals differed from those of extant species. Remains of Thylacosmilus have been found primarily in Catamarca, Entre Ríos, and La Pampa Provinces in northern Argentina.

<i>Megantereon</i> Extinct genus of saber-toothed cat from North America, Eurasia and Africa

Megantereon is an extinct genus of prehistoric machairodontine saber-toothed cat that lived in North America, Eurasia, and Africa from the late Pliocene to the Middle Pleistocene. It is a member of the tribe Smilodontini, and closely related to and possibly the ancestor of the famous American sabertooth Smilodon. In comparison to Smilodon it was somewhat smaller, around the size of a jaguar, though it is thought to have had a similar hunting strategy as an ambush predator.

<i>Josephoartigasia</i> Extinct genus of rodents

Josephoartigasia is an extinct genus of enormous dinomyid rodent from the Early Pliocene to Early Pleistocene of Uruguay. The only living member of Dinomyidae is the pacarana. Josephoartigasia is named after Uruguayan national hero José Artigas. It contains two species: J. magna, described in 1966 based on a left mandible, and J. monesi, described in 2008 based on a practically complete skull. Both are reported from the San José Member of the Raigón Formation by the Barrancas de San Gregorio along the shores of Kiyú beach.

<span class="mw-page-title-main">Tree allometry</span> Quantitative relations between some key characteristic dimensions of trees

Tree allometry establishes quantitative relations between some key characteristic dimensions of trees and other properties. To the extent these statistical relations, established on the basis of detailed measurements on a small sample of typical trees, hold for other individuals, they permit extrapolations and estimations of a host of dendrometric quantities on the basis of a single measurements.

<span class="mw-page-title-main">Durophagy</span> Eating of hard-shelled or exoskeleton bearing organisms, such as corals, shelled mollusks, or crabs

Durophagy is the eating behavior of animals that consume hard-shelled or exoskeleton-bearing organisms, such as corals, shelled mollusks, or crabs. It is mostly used to describe fish, but is also used when describing reptiles, including fossil turtles, placodonts and invertebrates, as well as "bone-crushing" mammalian carnivores such as hyenas. Durophagy requires special adaptions, such as blunt, strong teeth and a heavy jaw. Bite force is necessary to overcome the physical constraints of consuming more durable prey and gain a competitive advantage over other organisms by gaining access to more diverse or exclusive food resources earlier in life. Those with greater bite forces require less time to consume certain prey items as a greater bite force can increase the net rate of energy intake when foraging and enhance fitness in durophagous species.

Cranial evolutionary allometry (CREA) is a scientific theory regarding trends in the shape of mammalian skulls during the course of evolution in accordance with body size. Specifically, the theory posits that there is a propensity among closely related mammalian groups for the skulls of the smaller species to be short and those of the larger species to be long. This propensity appears to hold true for placental as well as non-placental mammals, and is highly robust. Examples of groups which exhibit this characteristic include antelopes, fruit bats, mongooses, squirrels and kangaroos as well as felids.

<span class="mw-page-title-main">Biting</span> Behaviour of opening and closing the jaw found in many animals

Biting is an action involving a set of teeth closing down on an object. It is a common zoological behavior, being found in toothed animals such as mammals, reptiles, amphibians, fish, and arthropods. Biting is also an action humans participate in, most commonly when chewing food. Myocytic contraction of the muscles of mastication is responsible for generating the force that initiates the preparatory jaw abduction (opening), then rapidly adducts (closes) the jaw and moves the top and bottom teeth towards each other, resulting in the forceful action of a bite. Biting is one of the main functions in the lives of larger organisms, providing them the ability to forage, hunt, eat, build, play, fight, protect, and much more. Biting may be a form of physical aggression due to predatory or territorial intentions. In animals, biting can also be a normal activity, being used for eating, scratching, carrying objects, preparing food for young, removing ectoparasites or irritating foreign objects, and social grooming. Humans can have the tendency to bite each other whether they are children or adults.

<i>Simbakubwa</i> Extinct genus of mammals

Simbakubwa is an extinct genus of hyaenodonts to the family Hyainailourinae that lived in Kenya during the early Miocene.

References

  1. 1 2 Wroe S, McHenry C, Thomason J (March 2005). "Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa". Proc. Biol. Sci. 272 (1563): 619–25. doi:10.1098/rspb.2004.2986. PMC   1564077 . PMID   15817436.
  2. 1 2 Per Christiansen; Stephen Wroe (2007). "Bite Forces and Evolutionary Adaptations to Feeding Ecology in Carnivores" (PDF). Ecology . 88 (2): 347–358. doi:10.1890/0012-9658(2007)88[347:bfaeat]2.0.co;2. PMID   17479753.
  3. Hite, Natalee J.; Germain, Cody; Cain, Blake W.; Sheldon, Mason; Perala, Sai Saketh Nandan; Sarko, Diana K. (2019). "The Better to Eat You With: Bite Force in the Naked Mole-Rat (Heterocephalus glaber) Is Stronger Than Predicted Based on Body Size". Frontiers in Integrative Neuroscience. 13: 70. doi: 10.3389/fnint.2019.00070 . ISSN   1662-5145. PMC   6904307 . PMID   31866840.
  4. Fish That Fake Orgasms: And Other Zoological Curiosities, Matt Walker, Macmillan, 2007, pp. 98-9, ISBN   978-0-312-37116-6 (retrieved 15 August 2010 from Google Books)
  5. Campbell, C. "Biology: Behavior - Diet". The Thylacine Museum. Archived from the original on 2017-06-21. Retrieved 16 December 2020.
  6. Magalhães, Arthur Ramalho; Damasceno, Elis Marina; Astúa, Diego (2020). "Bite force sexual dimorphism in Canidae (Mammalia: Carnivora): relations between diet, sociality and bite force intersexual differences". Hystrix, the Italian Journal of Mammalogy. 31 (2): 99–104. doi:10.4404/hystrix-00332-2020. ISSN   0394-1914.