Black powder rocket motor

Last updated

A black powder rocket motor propels a model rocket using black powder. Black powder rocket propellants consist of charcoal, sulfur, and potassium nitrate. Adjustments can be made to the amount of each component to change the rate at which the black powder burns.

Contents

Black powder rocket motors were created in a primitive form by the Chinese in the early 13th century, and through the years refinements have been made and several uses created. They have been used for weapons and surveillance devices as well as recreation.

Black powder rocket motors are only produced in small sizes, to reduce the risk of explosion and a loss of efficiency. Black powder rockets are produced in classes 1/8 A through F. Larger sizes of model rocket motors use ammonium perchlorate composite propellant, or other composite fuels that contain ammonium nitrate.

History

Black powder is the oldest propellant. Its use in rockets preceded its use in guns. [1] The three main components of black powder are charcoal, sulfur, and saltpeter (or potassium nitrate). It is known that, by 1045, the Chinese were producing black powder, because many references to the subject were found in The Wu-ching Tsung-Yao (Complete Compendium of Military Classics). [2] In the early thirteenth century the Chinese turned black powder propelled objects, formerly only used for entertainment, into weapons of war. The first recorded use of rockets as military weapons was in 1232. [1] The Chinese ‘arrows of fire’ were fired from a sort of catapult launcher. The black powder was packed in a closed tube that had a hole in one end for escaping hot gases, and a long stick as an elementary stability and guidance system.

Black powder had a very low specific impulse, however. Refinements in rocket design were made over the next few hundred years. In 1591 a Belgian, Jean Beavie, described and sketched the important idea of multistage rockets.

By 1600, rockets were being used in various parts of Europe against cavalry. By 1688, rockets weighing over 120 pounds had been built and fired with success in Germany. These German rockets, carrying 16-pound warheads, used wooden powder cases reinforced with linen.

Black powder rockets reached a new level of performance with the introduction of iron hulls and high-pressure combustion, developed in India by the engineers of Tipu Sultan. With a range of a kilometer, his rocket-propelled grenades and incendiaries took British invaders by surprise during the Anglo-Mysore Wars. [3] Impressed by these weapons, a London lawyer, Sir William Congreve, became fascinated by the challenge of improving rockets. [4] He experimented with propellants and case design. His systematic approach to the problem resulted in improved range, guidance (stabilization), and incendiary capabilities. The British armed forces used Congreve's new rockets to great advantage during the Napoleonic and 1812 Wars.

In 1939, researchers at the California Institute of Technology seeking to develop a high-performance solid rocket motor to assist aircraft take-off, combined black powder with common road asphalt to produce the first true composite motor. This was the birth of the true composite motor and marked the end of the use of black powder in major rocketry applications. [1] This was also the beginning of the Jet Propulsion Laboratory, and the source of its name. [5]

Formulations

Black powder rocket propellant is very similar in makeup to old-fashioned gunpowder. The main difference is the presence of a binder, usually dextrin. The commonly used Estes model rocket engines are made with black powder propellant. [2] Black powder propellant must be pressed very tightly in order to function well. Motors designed with black powder are most often end-burners, due to the fast burn rate of this propellant. A simple dextrin-free version (the most commonly used formulation) incorporates 75% potassium nitrate, 10% sulphur, and 15% charcoal. [4] Dextrin may be added as desired (usually between 0 and 5%). Additional (coarse) charcoal or metal powders (5 - 10%) may be added to obtain an interesting spark trail. However, this may alter slightly the burn rate of the mixture. [1]

Performance

The four leftmost motors are Estes black powder rocket motors. Model Rocket Motors.jpg
The four leftmost motors are Estes black powder rocket motors.

The impulse (area under the thrust-time curve) of a rocket motor is used to determine its class. Black powder motors are divided into classes from 1/8A to F, which covers an impulse range of 0 to 80 N·s (newton-seconds).

ClassTotal Impulse (Ns)
1/8A0 - 0.3125
1/4A0.3126 – 0.625
1/2A0.626 – 1.25
A1.26 – 2.50
B2.51 – 5.00
C5.01 – 10.00
D10.01 – 20.00
E20.01 – 40.00
F40.01 - 80.00

Figures from tests of Estes rocket motors are used in the following examples of rocket motor performance. [6]

For miniature black powder rocket motors (13 mm diameter), the maximum thrust is between 5 and 12 N, the total impulse is between 0.5 and 2.2 N·s, and the burn time is between 0.25 and 1 second. For Estes ‘regular size’ rocket motors (18 mm diameter), there are three classes: A, B, and C. The A class 18 mm motors have a maximum thrust between 9.5 and 9.75 N, a total impulse between 2.1 and 2.3 N·s, and a burn time between 0.5 and 0.75 seconds. The B class 18 mm motors have a maximum thrust between 12.15 and 12.75 N, a total impulse between 4.2 and 4.35 N·s, and a burn time between 0.85 and 1 second. The C class 18mm motors have a maximum thrust from 14 – 14.15 N, a total impulse between 8.8 and 9 N·s, and a burn time between 1.85 and 2 seconds.

There are also 3 classes included in Estes large (24 mm diameter) rocket motors: C, D, and E. The C class 24 mm motors have a maximum thrust between 21.6 and 21.75 N, a total impulse of between 8.8 and 9 N·s, and a burn time between 0.8 and 0.85 seconds. The D class 24 mm motors have a maximum thrust between 29.7 and 29.8 N, a total impulse between 16.7 and 16.85 N·s, and a burn time between 1.6 and 1.7 seconds. The E class 24 mm motors have a maximum thrust between 19.4 and 19.5 N, a total impulse between 28.45 and 28.6 N·s, and a burn time between 3 and 3.1 seconds. Estes also produces 29mm black powder motors in E and F classes. The F class motors have a total impulse of 50 Newton-seconds and contain 60 grams of black powder propellant. Larger black powder motors are not practical in the United States because explosives laws limit consumer class black powder motors to 62.5 grams of propellant. Larger amounts of propellant would require users to obtain an explosives permit from the Bureau of Alcohol, Tobacco, Firearms, and Explosives. Motors containing more than 62.5 grams of propellant usually rely on ammonium perchlorate composite propellant because that propellant is exempt from regulation as an explosive.

See also

Related Research Articles

<span class="mw-page-title-main">Gunpowder</span> Explosive once used in firearms

Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, carbon, and potassium nitrate (saltpeter). The sulfur and carbon act as fuels while the saltpeter is an oxidizer. Gunpowder has been widely used as a propellant in firearms, artillery, rocketry, and pyrotechnics, including use as a blasting agent for explosives in quarrying, mining, building pipelines, tunnels, and roads.

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to ancient Chinese ingenuity, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Hybrid-propellant rocket</span> Rocket engine that uses both liquid / gaseous and solid fuel

A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s.

Specific impulse is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. For engines like cold gas thrusters whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.

<span class="mw-page-title-main">Model rocket</span> Small recreational rocket

A model rocket is a small rocket designed to reach low altitudes and be recovered by a variety of means.

Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with bipropellants that release energy through the chemical reaction between an oxidizer and a fuel. While stable under defined storage conditions, monopropellants decompose very rapidly under certain other conditions to produce a large volume of its own energetic (hot) gases for the performance of mechanical work. Although solid deflagrants such as nitrocellulose, the most commonly used propellant in firearms, could be thought of as monopropellants, the term is usually reserved for liquids in engineering literature.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Estes Industries</span> Company that makes functional model rockets

Estes Industries is a model rocket company that was started in Denver, Colorado, USA. The company was the first to mass-produce model rocket engines with consistent and reliable performance. It is popular among hobbyists of experimental amateur rocketry for its simple and easily accessible engines, accessories, and rocket-building kits.

<span class="mw-page-title-main">National Association of Rocketry</span> U.S. nonprofit organization

The National Association of Rocketry (NAR) is a non-profit tax-exempt scientific organization dedicated to consumer safety, youth education, and the advancement of technology in the hobby of sport rocketry in the United States. Founded in 1957, the NAR is the oldest and largest spacemodeling organization in the world with over 8,000 members and 200 affiliated clubs across the U.S. It was established in 1957 by Orville Carlisle and G. Harry Stine. It supports all aspects of safe consumer sport rocket flying, from small model rockets with youth groups to very large high-power rockets flown by adult hobbyists.

<span class="mw-page-title-main">High-power rocketry</span> Hobby

High-power rocketry is a hobby similar to model rocketry. The major difference is that higher impulse range motors are used. The National Fire Protection Association (NFPA) definition of a high-power rocket is one that has a total weight of more than 1,500 grams (3.3 lb) and contains a motor or motors containing more than 125 grams (4.4 oz) of propellant and/or rated at more than 160 Newton-seconds of total impulse, or that uses a motor with an average thrust of 80 newtons (18 lbf) or more.

Motors for model rockets and high-powered rockets are classified by total impulse into a set of letter-designated ranges, from ⅛A up to O. The total impulse is the integral of the thrust over burn time.

Amateur rocketry, sometimes known as experimental rocketry or amateur experimental rocketry, is a hobby in which participants experiment with fuels and make their own rocket motors, launching a wide variety of types and sizes of rockets. Amateur rocketeers have been responsible for significant research into hybrid rocket motors, and have built and flown a variety of solid, liquid, and hybrid propellant motors.

Rocket candy, or R-Candy, is a type of rocket propellant for model rockets made with a form of sugar as a fuel, and containing an oxidizer. The propellant can be divided into three groups of components: the fuel, the oxidizer, and the additive(s). In the past, sucrose was most commonly used as fuel. Modern formulations most commonly use sorbitol for its ease of production. The most common oxidizer is potassium nitrate (KNO3). Potassium nitrate is most commonly found in tree stump remover. Additives can be many different substances, and either act as catalysts or enhance the aesthetics of the liftoff or flight. A traditional sugar propellant formulation is typically prepared in a 65:35 (13:7) oxidizer to fuel ratio.

<span class="mw-page-title-main">North Coast Rocketry</span> Model rocket company

North Coast Rocketry was a model rocket company founded in 1983 in Cleveland, Ohio by Chris Pearson and Matt Steele. Dan Kafun added as a partner in 1989.

Brown powder or prismatic powder, sometimes referred as "cocoa powder" due to its color, was a propellant used in large artillery and ship's guns from the 1870s to the 1890s. While similar to black powder, it was chemically formulated and formed hydraulically into a specific grain shape to provide slower burn rates with neutral or progressive burning, as opposed to the faster and regressive burn typical of randomly shaped grains of black powder produced by crushing and screening powder formed into sheets in a press box, as was typical for cannon powder previously.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Black powder substitute</span> Replacement for black powder

A black powder substitute or gunpowder substitute is a replacement for black powder (gunpowder) used in muzzleloading and cartridge firearms. Black powder substitutes have slightly different properties from gunpowder and are subject to different restrictions. Compared to gunpowder, black powder substitutes may have reduced sensitivity as an explosive, increased efficiency as a propellant powder, different density, and/or reduced ignition efficiency.

Ammonium perchlorate composite propellant (APCP) is a solid-propellant rocket fuel. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but also by being cast into shape, as opposed to powder pressing as with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

References

  1. 1 2 3 4 Bedard, Andre. ‘Black Powder Rockets’. Encyclopedia Astronautica. http://www.astronautix.com/
  2. 1 2 "Nichropulse Rocketry". Archived from the original on 2016-03-04. Retrieved 2011-06-14.
  3. Winter, Frank, "The First Golden Age of Rocketry", Smithsonian, 1990
  4. 1 2 "Black powder rocket - PyroGuide". Archived from the original on 2007-09-05. Retrieved 2011-09-18.
  5. Holt, Nathalia (January 2017). Rise of the Rocket Girls (paperback ed.). Back Bay Books. ISBN   978-0316338905.
  6. "Estes Motors : Apogee Rockets, Model Rocketry Excitement Starts Here".