Blood lead level

Last updated

Blood lead level (BLL), is a measure of the amount of lead in the blood. [1] [2] Lead is a toxic heavy metal and can cause neurological damage, especially among children, at any detectable level. High lead levels cause decreased vitamin D and haemoglobin synthesis as well as anemia, acute central nervous system disorders, and possibly death. [3]

Contents

Pre-industrial human BLL measurements are estimated to have been 0.016 μg/dL, and this level increased markedly in the aftermath of the industrial revolution. At the end of the late 20th century, BLL measurements from remote human populations ranged from 0.8 to 3.2 μg/dL. Children in populations adjacent to industrial centers in developing countries often have average BLL measurements above 25 μg/dL. In the United States, the average blood level for children aged 1–5 years fell from 15.2 μg/dL in 1976–1980 to 0.83 μg/dL in 2011–2016. No level of lead in the blood of children is currently thought to be safe, but in 2021, the US Centers for Disease Control and Prevention (CDC) identified 3.5 μg/dL as the blood lead level of concern in children which should prompt further medical investigation. Approximately 2.5% of American children have at least this much lead in their blood. [4]

Measurement

Measuring a person's blood lead level requires a blood sample, which may be performed with a fingerstick or a blood draw.

The amount of lead found in the blood sample may be measured in micrograms of lead per deciliter of blood (μg/dL) especially in the United States; 5 μg/dL is equivalent to 0.24 μmol/L (micromolar). [5]

BLL cannot measure long-term lead exposure. An x-ray fluorescence test provides measurements from the bone because lead is predominantly stored in the human body in calcified tissues such as bones. [6]

No safe level

The Centers for Disease Control and Prevention (CDC) changed its view on blood lead levels in 2012 [7] because of "a growing body of studies concluding that blood lead levels (BLLs) lower than 10 μg/dL harm children" [8] with "irreversible" effects, and "since no safe blood lead level in children has been identified, a blood lead 'level of concern' cannot be used to define individuals in need of intervention". The new policy is to aim to reduce average blood lead levels in US children to as low a level as possible.

The CDC now publishes a "reference" blood lead level which they hope can decrease in coming years. The reference value is "based on the 97.5th percentile of the BLL distribution among children 1–5 years old in the United States". [8] As of 2021, the value is set at 3.5 μg/dL. [4] It is not a level deemed by the CDC as "safe". The reference level is designed to be used as a policy tool. Parents, clinicians, communities, state and federal authorities and political leaders are expected to monitor blood lead test levels, aware that children testing higher than the reference level are testing higher than 97.5% of all US children. The CDC expects action to be taken when test levels are found to exceed the reference. As blood lead levels slowly decline in response to such action, the reference will also decline. CDC will recalculate a new reference every four years.

Prior to the industrial revolution human BLL is estimated to have been far less than it is today. Bone lead measurements from two Native American populations living on the Pacific coast and the Colorado River between 1000 and 1300 A.D. show that BLLs would have been approximately 0.016 μg/dL. [9] [10] The World Health Organization and others interpret these measurements to be broadly representative of human preindustrial BLL. [3]

Contemporary human BLLs in remote locations are estimated to be 0.8 and 3.2 μg/dL in the southern and northern hemispheres, respectively. [3] [9] Blood lead levels 50 to 1,000 times higher than preindustrial levels are commonly measured in contemporary human populations around the world. [3] The National Academies evaluated this issue [11] in 1991 and confirmed that the blood lead level of the average person in the US was 300 to 500 times higher than that of pre-industrial humans.

Clair Patterson originally developed techniques to measure tiny concentrations of lead in his quest to determine the age of Earth. When he discovered that preindustrial humans had far less lead in their bodies than all modern humans, he wrote: "It seems probable that persons polluted with amounts of lead that are at least 400 times higher than natural levels, and are nearly one-third to one-half that required to induce dysfunction, that their lives are being adversely affected by loss of mental acuity and irrationality. This would apply to most people in the United States". [12]

Demographic and geographic patterns

Blood lead levels are highest in countries where lead is added to petrol or gasoline, where lead is used in paint or soldered products, in urban areas, in areas adjacent to high road traffic, and in developing countries. [3] In Jamaica, 44% of children living near lead production facilities had BLLs above 25 μg/dL. In Albania, 98% of preschool children and 82% of schoolchildren had BLLs above 10 μg/dL; preschoolers living near a battery factory had average BLLs of 43 μg/dL. In China, 50% of children living in rural areas had BLLs above 10 μg/dL, and children living near sites of industry and high traffic had average BLLs ranging from 22 to 68 μg/dL. [3]

BLL measurements from developed countries decreased markedly beginning in the late 1970s, when restrictions were placed upon lead use in gasoline, petrol, paint, soldering material and other products. In the United States, average BLLs measured among tens of thousands of subjects declined from 12.8 to 2.8 μg/dL between 1976 and 1991. [3] In the 1990s, BLLs of children in Australia were measured to be 5 μg/dL, and 9 μg/dL in Barcelona, Spain. [3]

In the United States, blood lead levels remain highest for children, for people in urban centers, for people of lower socioeconomic status, and for minorities. [13]

After the phasing out of leaded gasoline in China, blood lead levels of children in that country now appear to be associated with coal consumption. "Coal consumption fly ash is a dominant source of lead exposure to children in Shanghai." [14] As of 2009, coal combustion was considered to be an important source of Pb air pollution in China, the eastern U.S., and to some extent, in Europe. [15]

Sources of lead

Exposure to lead occurs through ingestion, inhalation, and dermal contact. Lead enters the bloodstream through exposure and elevates blood lead level that may result in lead poisoning or an elevated blood lead level. [16] For example, a child can ingest lead by chewing on a toy that is made of lead-contaminated metal or is painted with lead-contaminated paint.

A major source of exposure to lead comes from inhalation. Factories and industries, vehicle exhaust (especially from vehicles using leaded gasoline), and even dust in the air that people breathe all have the potential of containing lead. Other major sources of lead exposure include ingestion and contact with products such as paint and soil that may contain lead. Many older claw-foot bathtubs have also been found to leach lead, especially when filled with warm bath water. [17]

Environmental exposure to lead is not the only source of lead-related health effects. Many industrial workers in the United States have potential occupational exposure to lead, and lead poisoning is still seen at occupational health clinics. [6] Other known occupations include shipbuilding, painting, battery making, and fire range [18] instruction and cleaning. [19]

Health effects

The Centers for Disease Control and Prevention (CDC) states "No safe blood lead level in children has been identified. Even low levels of lead in blood have been shown to affect IQ, ability to pay attention, and academic achievement. Effects of lead exposure cannot be corrected". [20] "The absence of an identified BLL without deleterious effects, combined with the evidence that these effects appear to be irreversible, underscores the critical importance of primary prevention." [8]

The most sensitive populations are infants, children, and pregnant women.

A child can drink a glass of water containing lead and absorb 50% of it. An adult might only retain 10% of the lead in that water. And once the lead is in the child's body, it reaches the brain through the not fully developed blood brain barrier. The body removes lead from blood and stores it in bone, but in children it subsequently leaves the bone more readily compared to adults. [21] [22] "Lead that has accumulated in a woman's bones is removed from her bones and passes freely from mother to child; maternal and fetal blood lead levels are virtually identical. Once in the fetal circulation, lead readily enters the developing brain through the immature blood–brain barrier". [21]

"Lead is associated with a wide range of toxicity in children across a very broad band of exposures, down to the lowest blood lead concentrations yet studied, both in animals and people. These toxic effects extend from acute, clinically obvious, symptomatic poisoning at high levels of exposure down to subclinical (but still very damaging) effects at lower levels. Lead poisoning can affect virtually every organ system in the body. The principal organs affected are the central and peripheral nervous system and the cardiovascular, gastrointestinal, renal, endocrine, immune and haematological systems". [21]

Adults who are exposed to a dangerous amount of lead can experience anemia, nervous system dysfunction, weakness, hypertension, kidney problems, decreased fertility, an increased level of miscarriages, premature deliveries, and low birth weight of their child. [23]

A 2018 study in the American Economic Journal: Applied Economics found that for Rhode Island children born 1997–2005 (and therefore exposed to historically low levels of lead), "a one-unit decrease in average blood lead levels reduces the probability of being substantially below proficient in reading (math) by 0.96 (0.79) percentage points on a baseline of 12 (16) percent." [24]

A 2020 study that looked at the phasing-out of leaded gasoline in Sweden and used extensive administrative data to track 800,000 Swedish children into adulthood found that even low levels of lead adversely affected the cognitive abilities of children. The study found that the children who were not exposed to leaded gasoline had 5% higher yearly earnings as adults than the children who were exposed. [25]

See also


Notes

  1. Klotz, Katrin; Göen, Thomas (2017). "Chapter 6. Human Biomonitoring of Lead Exposure". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.). Lead: Its Effects on Environment and Health. Metal Ions in Life Sciences. Vol. 17. de Gruyter. pp. 99–122. doi:10.1515/9783110434330-006. PMID   28731299.
  2. Pohl, Hana R.; Ingber, Susan Z.; Abadin, Henry G. (2017). "Chapter 13. Historical View on Lead: Guidelines and Regulations". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.). Lead: Its Effects on Environment and Health. Metal Ions in Life Sciences. Vol. 17. de Gruyter. pp. 435–470. doi:10.1515/9783110434330-013. PMID   28731306.
  3. 1 2 3 4 5 6 7 8 Tong, Shilu; von Schimding, Yasmine; Prapamontol, Tippawan (2000). "Environmental lead exposure: a public health problem of global dimensions". Bulletin of the World Health Organization. 78 (9): 1068–77. PMC   2560844 . PMID   11019456.
  4. 1 2 Ruckart, Perri Zeitz (2021). "Update of the Blood Lead Reference Value — United States, 2021". MMWR. Morbidity and Mortality Weekly Report. 70 (43): 1509–1512. doi:10.15585/mmwr.mm7043a4. ISSN   0149-2195. PMC   8553025 . PMID   34710078.
  5. "Blood lead levels in Broken Hill children". Government of New South Wales, Australia. Archived from the original on 31 March 2011. Retrieved 20 June 2011.
  6. 1 2 "Lead Toxicity and Human Health | Bone Lead Testing Facility". labs.icahn.mssm.edu. 21 August 2018. Retrieved 26 April 2019.
  7. "Update on Blood Lead Levels in Children". Centers for Disease Control and Prevention. Retrieved 4 February 2016.
  8. 1 2 3 "CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention" (PDF). Retrieved 5 February 2016.
  9. 1 2 Patterson, Clair; Ericson, Jonathan; Mirela, Manea-Krichten; Shirahata, Hiroshi (1991). "Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead". The Science of the Total Environment. 107: 205–236. Bibcode:1991ScTEn.107..205P. doi:10.1016/0048-9697(91)90260-l. PMID   1785050.
  10. Flegal, A. Russell; Smith, Donald (1992). "Lead Levels in Preindustrial Humans". The New England Journal of Medicine. 326 (19): 1293–4. doi:10.1056/nejm199205073261916. PMID   1532849.
  11. National Research Council (US) Committee on Measuring Lead in Critical Populations (1993). Measuring Lead Exposure in Infants, Children, and Other Sensitive Populations (1993). doi:10.17226/2232. ISBN   978-0-309-04927-6. PMID   25144057 . Retrieved 3 February 2016.{{cite book}}: |website= ignored (help)
  12. Denworth, Lydia (2008). Toxic Truth . Beacon Press. p.  111. ISBN   978-0-8070-0032-8.
  13. Jones, Robert; Homa, David; Meyer, Pamela; Brody, Debra; Caldwell, Kathleen; Pirkle, James; Brown, Mary Jean (2009). "Trends in Blood Lead Levels and Blood Lead Testing Among US Children Aged 1 to 5 Years, 1988–2004". Pediatrics. 123 (3): e376-85. doi:10.1542/peds.2007-3608. PMID   19254973. S2CID   29464201.
  14. Liang, Feng; Zhang, Guilin; Tan, Mingguang; Yan, Chonghuai; Li, Xiaolin; Li, Yulan; Li, Yan; Zhang, Yuanmao; Shan, Zuci (2010). "Lead in children's blood is mainly caused by coal-fired ash after phasing out of leaded gasoline in Shanghai". Environmental Science & Technology. 44 (12): 4760–5. Bibcode:2010EnST...44.4760L. doi:10.1021/es9039665. PMID   20536267.
  15. Díaz-Somoano, M.; Kylander, M. E.; López-Antón, M. A.; Suárez-Ruiz, I.; Martínez-Tarazona, M. R.; Ferrat, M.; Kober, B.; Weiss, D. J. (2009). "Stable Lead Isotope Compositions In Selected Coals From Around The World And Implications For Present Day Aerosol Source Tracing". Environmental Science & Technology. 43 (4): 1078–1085. Bibcode:2009EnST...43.1078D. doi:10.1021/es801818r. ISSN   0013-936X. PMID   19320161.
  16. Stellman, Jeanne Mager (1998). Encyclopaedia of Occupational Health and Safety. International Labour Organization. pp. 81.2–81.4.
  17. Agency for Toxic Substances and Disease Registry (August 2007). "ATSDR Toxicological Profile for Lead" (PDF). Retrieved 15 March 2012.
  18. Kime, Patricia (3 April 2019). "The Army Thought He Was Faking His Health Issues. Turns Out He Had Chronic Lead Poisoning". The New York Times. ISSN   0362-4331 . Retrieved 26 April 2019.
  19. "Occupational Lead Exposure and Your Health" (PDF). www.mountsinai.org/selikoff. 26 April 2019. Retrieved 26 April 2019.
  20. "What Do Parents Need to Know to Protect Their Children?" . Retrieved 4 February 2016.
  21. 1 2 3 "Childhood Lead Poisoning" (PDF). World Health Organization. Retrieved 5 February 2016.
  22. "Almost all adults in the US had more lead in their blood when they were children than the worst hit children in Flint". 3 February 2016. Retrieved 5 February 2016.
  23. "Lead Toxicity What Are the Physiologic Effects of Lead Exposure?" . Retrieved 5 February 2016.
  24. Aizer, Anna; Currie, Janet; Simon, Peter; Vivier, Patrick (2018). "Do Low Levels of Blood Lead Reduce Children's Future Test Scores?" (PDF). American Economic Journal: Applied Economics. 10 (1): 307–341. doi:10.1257/app.20160404. ISSN   1945-7782. PMC   6411080 . PMID   30867889.
  25. Grönqvist, Hans; Nilsson, J. Peter; Robling, Per-Olof (24 February 2020). "Understanding How Low Levels of Early Lead Exposure Affect Children's Life Trajectories". Journal of Political Economy. 128 (9): 3376–3433. doi:10.1086/708725. ISSN   0022-3808. S2CID   213322995.

Related Research Articles

<span class="mw-page-title-main">Arsenic poisoning</span> Illness from ingesting arsenic

Arsenic poisoning is a medical condition that occurs due to elevated levels of arsenic in the body. If arsenic poisoning occurs over a brief period of time, symptoms may include vomiting, abdominal pain, encephalopathy, and watery diarrhea that contains blood. Long-term exposure can result in thickening of the skin, darker skin, abdominal pain, diarrhea, heart disease, numbness, and cancer.

<span class="mw-page-title-main">Tetraethyllead</span> Organolead compound

Tetraethyllead (commonly styled tetraethyl lead), abbreviated TEL, is an organolead compound with the formula Pb(C2H5)4. It is a fuel additive, first being mixed with gasoline beginning in the 1920s as a patented octane rating booster that allowed engine compression to be raised substantially. This in turn increased vehicle performance and fuel economy. TEL was first synthesised by German chemist Carl Jacob Löwig in 1853. American chemical engineer Thomas Midgley Jr., who was working for General Motors, was the first to discover its effectiveness as an antiknock agent in 1921, after spending several years attempting to find an additive that was both highly effective and inexpensive.

<span class="mw-page-title-main">Lead poisoning</span> Poisoning caused by lead in the body

Lead poisoning, also known as plumbism and saturnism, is a type of metal poisoning caused by lead in the body. Symptoms may include abdominal pain, constipation, headaches, irritability, memory problems, infertility, and tingling in the hands and feet. It causes almost 10% of intellectual disability of otherwise unknown cause and can result in behavioral problems. Some of the effects are permanent. In severe cases, anemia, seizures, coma, or death may occur.

<span class="mw-page-title-main">Mercury poisoning</span> Poisoning caused by mercury chemicals

Mercury poisoning is a type of metal poisoning due to exposure to mercury. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High-level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury are unclear.

<span class="mw-page-title-main">Cholecalciferol</span> Vitamin D3, a chemical compound

Cholecalciferol, also known as vitamin D3 and colecalciferol, is a type of vitamin D that is made by the skin when exposed to sunlight; it is found in some foods and can be taken as a dietary supplement.

<span class="mw-page-title-main">Carbon monoxide poisoning</span> Toxic effects of carbon monoxide

Carbon monoxide poisoning typically occurs from breathing in carbon monoxide (CO) at excessive levels. Symptoms are often described as "flu-like" and commonly include headache, dizziness, weakness, vomiting, chest pain, and confusion. Large exposures can result in loss of consciousness, arrhythmias, seizures, or death. The classically described "cherry red skin" rarely occurs. Long-term complications may include chronic fatigue, trouble with memory, and movement problems.

<i>Morbidity and Mortality Weekly Report</i> Weekly epidemiological report published by the U.S. Centers for Disease Control (CDC)

The Morbidity and Mortality Weekly Report (MMWR) is a weekly epidemiological digest for the United States published by the Centers for Disease Control and Prevention (CDC). It was originally established as Weekly Health Index in 1930, changing its title to Weekly Mortality Index in 1941 and Morbidity and Mortality in 1952. It acquired its current name in 1976. It is the main vehicle for publishing public health information and recommendations that have been received by the CDC from state health departments. Material published in the report is in the public domain and may be reprinted without permission. As of 2019, the journal's editor-in-chief is Charlotte Kent.

Cadmium is a naturally occurring toxic metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure in humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. The primary use of cadmium is in the manufacturing of NiCd rechargeable batteries. The primary source for cadmium is as a byproduct of refining zinc metal. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, the construction industry, and the agricultural industry.

<span class="mw-page-title-main">Succimer</span> Medication used to treat lead, mercury, and arsenic poisoning

Succimer, sold under the brand name Chemet among others, is a medication used to treat lead, mercury, and arsenic poisoning. When radiolabeled with technetium-99m, it is used in many types of diagnostic testing. A full course of Succimer lasts for 19 days of oral administration. A second course should be given when more than two weeks pass after the first course.

<span class="mw-page-title-main">Abrin</span> Chemical compound

Abrin is an extremely toxic toxalbumin found in the seeds of the rosary pea, Abrus precatorius. It has a median lethal dose of 0.7 micrograms per kilogram of body mass when given to mice intravenously. The median toxic dose for humans ranges from 10 to 1000 micrograms per kilogram when ingested and is 3.3 micrograms per kilogram when inhaled.

<span class="mw-page-title-main">Vitamin D toxicity</span> Human disease

Vitamin D toxicity, or hypervitaminosis D is the toxic state of an excess of vitamin D. The normal range for blood concentration in adults is 20 to 50 nanograms per milliliter (ng/mL).

<span class="mw-page-title-main">Organophosphate poisoning</span> Medical condition

Organophosphate poisoning is poisoning due to organophosphates (OPs). Organophosphates are used as insecticides, medications, and nerve agents. Symptoms include increased saliva and tear production, diarrhea, vomiting, small pupils, sweating, muscle tremors, and confusion. While onset of symptoms is often within minutes to hours, some symptoms can take weeks to appear. Symptoms can last for days to weeks.

<span class="mw-page-title-main">Metal toxicity</span> Harmful effects of certain metals

Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. It is often thought that only heavy metals can be toxic, but lighter metals such as beryllium and lithium may also be in certain circumstances. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, a technique involving the administration of chelation agents to remove metals from the body.

The US National Institute for Occupational Safety and Health funds the Adult Blood Lead Epidemiology and Surveillance (ABLES) program, a state-based surveillance program of laboratory-reported adult blood lead levels. In 2009, the ABLES program updated its case definition for an Elevated Blood Lead Level to a blood lead concentration equal or greater than 10 micrograms per deciliter (10 µg/dL). This chart shows CDC/NIOSH/ABLES Elevated blood lead level case definition in perspective.

Workplace health surveillance or occupational health surveillance (U.S.) is the ongoing systematic collection, analysis, and dissemination of exposure and health data on groups of workers. The Joint ILO/WHO Committee on Occupational Health at its 12th Session in 1995 defined an occupational health surveillance system as "a system which includes a functional capacity for data collection, analysis and dissemination linked to occupational health programmes".

<span class="mw-page-title-main">Vitamin D</span> Group of fat-soluble secosteroids

Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and for many other biological effects. In humans, the most important compounds in this group are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol).

In analytical chemistry, biomonitoring is the measurement of the body burden of toxic chemical compounds, elements, or their metabolites, in biological substances. Often, these measurements are done in blood and urine. Biomonitoring is performed in both environmental health, and in occupational safety and health as a means of exposure assessment and workplace health surveillance.

<span class="mw-page-title-main">Nitrogen dioxide poisoning</span> Medical condition

Nitrogen dioxide poisoning is the illness resulting from the toxic effect of nitrogen dioxide. It usually occurs after the inhalation of the gas beyond the threshold limit value. Nitrogen dioxide is reddish-brown with a very harsh smell at high concentrations, at lower concentrations it is colorless but may still have a harsh odour. Nitrogen dioxide poisoning depends on the duration, frequency, and intensity of exposure.

<span class="mw-page-title-main">Lead–crime hypothesis</span> Hypothesized effect of blood lead levels on criminal behavior

After decades of increasing crime across the industrialised world, crime rates started to decline sharply in the 1990s, a trend that continued into the new millennium. Many explanations have been proposed, including situational crime prevention and interactions between many other factors complex, multifactorial causation.

The Kabwe mine or Broken Hill mine is a former lead smelting and mining site near Kabwe, Zambia, that operated from 1906 to 1994. At its peak, between 1925 and 1974, it was owned by Anglo American plc and was Africa's largest lead producer. The mine produced extremely toxic lead pollution for ninety years. Several studies have confirmed that over 100,000 people near the mine, including tens of thousands of children, suffer from lead poisoning. Kabwe is one of the world's most polluted towns.

References