Blue diaper syndrome

Last updated
Blue diaper syndrome
Other namesOther Names: Hypercalcemia, familial, with nephrocalcinosis and indicanuria
Autorecessive.svg
Blue diaper syndrome may have an autosomal recessive pattern of inheritance.
Autosomal recessive - en.svg
Blue diaper syndrome may have an X-linked recessive pattern of inheritance.
Medication none

Blue diaper syndrome is a rare, autosomal recessive or X linked recessive metabolic disorder characterized in infants by bluish urine-stained diapers. It is also known as Drummond's syndrome, and hypercalcemia. [1] [2]

Contents

It is caused by a defect in tryptophan absorption. Bacterial degradation of unabsorbed tryptophan in the intestine leads to excessive indole production and thus to indicanuria which, on oxidation to indigo blue, causes a peculiar bluish discoloration of the diaper (indoluria). Symptoms typically include digestive disturbances, fever and visual problems. Some may also develop disease due to the incomplete breakdown of tryptophan. [3]

It was characterized in 1964, and inherited in an autosomal recessive pattern although X-linked recessive inheritance has not been completely ruled out since reported patients have been male. [4]

If this syndrome is X linked, the chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. [5] Carrier females usually do not display symptoms of the disorder because it is usually the X chromosome with the abnormal gene that is “turned off”. [3]

Parents can undergo genetic testing to see if their child will get this syndrome, but most do not find out until they see the symptoms mentioned below. [5]

Signs and symptoms

The signs and symptoms of blue diaper syndrome may include irritability, constipation, poor appetite, vomiting, and poor growth. Some children experience frequent fevers and intestinal infections. [1] [3]

Hypercalcemia could be a potential issue in affected children. Some children with blue diaper syndrome have eye or vision issues, particularly underdeveloped portions of the eye, including the cornea and optic disc.[ citation needed ]

Genetics

Blue diaper syndrome affects males and females equally. The number of people affected in the general population is unknown. [1]

Although the disease is most likely recessive, it could be X-linked. [6]

Recent research indicates that mutations in the LAT2 [7] and TAT1 [8] genes might be involved in causing this syndrome.

It is linked to X linked gene and in order for a person to develop it, both parents must carry the gene. [3] This syndrome is diagnosed through clinical evaluation and a fresh urine sample [3]

Diagnosis

A diagnosis is usually made through clinical evaluation, observing detailed patient history then identifying the possible characteristic symptoms and testing fresh urine samples to enhance such evidence. [1]

Treatment

Children with blue diaper syndrome are put on restricted diets. This is in effort to reduce kidney damage. Restrictions include: calcium, protein, vitamin D, and tryptophan. Calcium is restricted to help prevent kidney damage. [3] Examples of food with high levels of tryptophan include turkey and milk. [3] Diets are also expected to be low in protein, which will help prevent symptoms, along with restricting vitamin D intake. Antibiotics may be used to control or eliminate particular intestinal bacteria.[ citation needed ]

Genetic counseling can also be beneficial, as well as taking part in clinical trials. [9]

Related Research Articles

<span class="mw-page-title-main">Joubert syndrome</span> Medical condition

Joubert syndrome is a rare autosomal recessive genetic disorder that affects the cerebellum, an area of the brain that controls balance and coordination.

<span class="mw-page-title-main">Alport syndrome</span> Medical condition

Alport syndrome is a genetic disorder affecting around 1 in 5,000-10,000 children, characterized by glomerulonephritis, end-stage kidney disease, and hearing loss. Alport syndrome can also affect the eyes, though the changes do not usually affect vision, except when changes to the lens occur in later life. Blood in urine is universal. Proteinuria is a feature as kidney disease progresses.

<span class="mw-page-title-main">MASA syndrome</span> Medical condition

MASA syndrome is a rare X-linked recessive neurological disorder on the L1 disorder spectrum belonging in the group of hereditary spastic paraplegias a paraplegia known to increase stiffness spasticity in the lower limbs. This syndrome also has two other names, CRASH syndrome and Gareis-Mason syndrome.

<span class="mw-page-title-main">Menkes disease</span> X-linked recessive copper-transport disorder

Menkes disease (MNK), also known as Menkes syndrome, is an X-linked recessive disorder caused by mutations in genes coding for the copper-transport protein ATP7A, leading to copper deficiency. Characteristic findings include kinky hair, growth failure, and nervous system deterioration. Like all X-linked recessive conditions, Menkes disease is more common in males than in females. The disorder was first described by John Hans Menkes in 1962.

<span class="mw-page-title-main">Mulibrey nanism</span> Medical condition

Mulibrey nanism is a rare autosomal recessive congenital disorder. It causes severe growth failure along with abnormalities of the heart, muscle, liver, brain and eye. TRIM37 is responsible for various cellular functions including developmental patterning.

<span class="mw-page-title-main">Isovaleric acidemia</span> Medical condition disrupting normal metabolism

Isovaleric acidemia is a rare autosomal recessive metabolic disorder which disrupts or prevents normal metabolism of the branched-chain amino acid leucine. It is a classical type of organic acidemia.

<span class="mw-page-title-main">Maple syrup urine disease</span> Autosomal recessive metabolic disorder

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder that affects the body’s ability to metabolize amino acids due to a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex. It particularly affects the metabolism of amino acids- leucine, isoleucine, and valine. With MSUD, the body is not able to properly break down these amino acids, therefore leading to the amino acids to build up in urine and become toxic. The condition gets its name from the distinctive sweet odor of affected infants' urine and earwax due to the buildup of these amino acids.

<span class="mw-page-title-main">Cystinosis</span> Lysosomal storage disease

Cystinosis is a lysosomal storage disease characterized by the abnormal accumulation of cystine, the oxidized dimer of the amino acid cysteine. It is a genetic disorder that follows an autosomal recessive inheritance pattern. It is a rare autosomal recessive disorder resulting from accumulation of free cystine in lysosomes, eventually leading to intracellular crystal formation throughout the body. Cystinosis is the most common cause of Fanconi syndrome in the pediatric age group. Fanconi syndrome occurs when the function of cells in renal tubules is impaired, leading to abnormal amounts of carbohydrates and amino acids in the urine, excessive urination, and low blood levels of potassium and phosphates.

<span class="mw-page-title-main">Hartnup disease</span> Metabolic disorder

Hartnup disease is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids. Niacin is a precursor to nicotinamide, a necessary component of NAD+.

Abruzzo–Erickson syndrome is an extremely rare disorder characterized by deafness, protruding ears, coloboma, a cleft palate or palatal rugosity, radial synostosis, and short stature. It was first characterized by Abruzzo and Erickson in 1977 as a CHARGE like syndrome as variably expressed among a family of two brothers, their mother, and their maternal uncle. Members of this family exhibited many of the CHARGE symptoms, but notably did not have choanal atresia and the brothers experienced typical genital development. Due to the recent discovery of this disorder, its etiology is not fully known but it is understood that it arises from mutations on the TBX22 gene on the X-chromosome. The disorder is inherited in an X-linked recessive manner. There is currently no known cure but its symptoms can be treated.

<span class="mw-page-title-main">SCARF syndrome</span> Medical condition

SCARF syndrome is a rare syndrome characterized by skeletal abnormalities, cutis laxa, craniostenosis, ambiguous genitalia, psychomotor retardation, and facial abnormalities. These characteristics are what make up the acronym SCARF. It shares some features with Lenz-Majewski hyperostotic dwarfism. It is a very rare disease with an incidence rate of approximately one in a million newborns. It has been clinically described in two males who were maternal cousins, as well as a 3-month-old female. Babies affected by this syndrome tend to have very loose skin, giving them an elderly facial appearance. Possible complications include dyspnea, abdominal hernia, heart disorders, joint disorders, and dislocations of multiple joints. It is believed that this disease's inheritance is X-linked recessive.

<span class="mw-page-title-main">Papillon–Lefèvre syndrome</span> Medical condition

Papillon–Lefèvre syndrome (PLS), also known as palmoplantar keratoderma with periodontitis, is an autosomal recessive genetic disorder caused by a deficiency in cathepsin C.

<span class="mw-page-title-main">Winchester syndrome</span> Rare hereditary connective tissue disease

Winchester syndrome is a rare hereditary connective tissue disease described in 1969, of which the main characteristics are short stature, marked contractures of joints, opacities in the cornea, coarse facial features, dissolution of the carpal and tarsal bones, and osteoporosis. Winchester syndrome was once considered to be related to a similar condition, multicentric osteolysis, nodulosis, and arthropathy (MONA). However, it was discovered that the two are caused by mutations found in different genes; however they mostly produce the same phenotype or clinical picture. Appearances resemble rheumatoid arthritis. Increased uronic acid is demonstrated in cultured fibroblasts from the skin and to a lesser degree in both parents. Despite initial tests not showing increased mucopolysaccharide excretion, the disease was regarded as a mucopolysaccharidosis. Winchester syndrome is thought to be inherited as an autosomal recessive trait.

<span class="mw-page-title-main">Hypertryptophanemia</span> Medical condition

Hypertryptophanemia is a rare autosomal recessive metabolic disorder that results in a massive buildup of the amino acid tryptophan in the blood, with associated symptoms and tryptophanuria.

<span class="mw-page-title-main">Peeling skin syndrome</span> Medical condition

Peeling skin syndrome is an autosomal recessive disorder characterized by lifelong peeling of the stratum corneum, and may be associated with pruritus, short stature, and easily removed anagen hair.

<span class="mw-page-title-main">Mohr–Tranebjærg syndrome</span> Medical condition

Mohr–Tranebjærg syndrome (MTS) is a rare X-linked recessive syndrome also known as deafness–dystonia syndrome and caused by mutation in the TIMM8A gene. It is characterized by clinical manifestations commencing with early childhood onset hearing loss, followed by adolescent onset progressive dystonia or ataxia, visual impairment from early adulthood onwards and dementia from the 4th decade onwards. The severity of the symptoms may vary, but they progress usually to severe deafness and dystonia and sometimes are accompanied by cortical deterioration of vision and mental deterioration.

<span class="mw-page-title-main">Kufor–Rakeb syndrome</span> Medical condition

Kufor–Rakeb syndrome (KRS) is an autosomal recessive disorder of juvenile onset also known as Parkinson disease-9 (PARK9). It is named after Kufr Rakeb in Irbid, Jordan. Kufor–Rakeb syndrome was first identified in this region in Jordan with a Jordanian couple's 5 children who had rigidity, mask-like face, and bradykinesia. The disease was first described in 1994 by Najim Al-Din et al. The OMIM number is 606693.

<span class="mw-page-title-main">Monocarboxylate transporter 10</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 10, also known as aromatic amino acid transporter 1 and T-type amino acid transporter 1 (TAT1) and solute carrier family 16 member 10 (SLC16A10), is a protein that in humans is encoded by the SLC16A10 gene. SLC16A10 is a member of the solute carrier family.

<span class="mw-page-title-main">CARASIL</span> Medical condition

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is disease of the arteries in the brain, which causes tissue loss in the subcortical region of the brain and the destruction of myelin in the CNS. CARASIL is characterized by symptoms such as gait disturbances, hair loss, low back pain, dementia, and stroke. CARASIL is a rare disease, having only been diagnosed in about 50 patients, of which ten have been genetically confirmed. Most cases have been reported in Japan, but Chinese and caucasian individuals have also been diagnosed with the disease. CARASIL is inherited in an autosomal recessive pattern. There is currently no cure for CARASIL. Other names for CARASIL include familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension, Nemoto disease and Maeda syndrome.

<span class="mw-page-title-main">Citrullinemia type I</span> Medical condition

Citrullinemia type I (CTLN1), also known as arginosuccinate synthetase deficiency, is a rare disease caused by a deficiency in argininosuccinate synthetase, an enzyme involved in excreting excess nitrogen from the body. There are mild and severe forms of the disease, which is one of the urea cycle disorders.

References

  1. 1 2 3 4 "Blue Diaper Syndrome - NORD (National Organization for Rare Disorders)". NORD (National Organization for Rare Disorders). Retrieved 2016-03-01.
  2. "Blue Diaper Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2022-11-29.
  3. 1 2 3 4 5 6 7 "Blue Diaper Syndrome - NORD (National Organization for Rare Disorders)".
  4. "Drummond syndrome | Hereditary Ocular Diseases". disorders.eyes.arizona.edu. Retrieved 2022-11-29.
  5. 1 2 "Blue Diaper Syndrome disease: Malacards - Research Articles, Drugs, Genes, Clinical Trials". www.malacards.org.
  6. "Entry - 211000 - BLUE DIAPER SYNDROME - OMIM". www.omim.org. Retrieved 2024-08-03.
  7. Park SY, Kim JK, Kim IJ, Choi BK, Jung KY, Lee S, Park KJ, Chairoungdua A, Kanai Y, Endou H, Kim do K (2005). "Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule". Arch Pharm Res. 28 (4): 421–32. doi:10.1007/BF02977671. PMID   15918515. S2CID   2139640.
  8. Kim do K, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H (2002). "The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location". Genomics. 79 (1): 95–103. doi:10.1006/geno.2001.6678. PMID   11827462.
  9. RESERVED, INSERM US14 -- ALL RIGHTS. "Orphanet: Blue diaper syndrome". www.orpha.net.{{cite web}}: CS1 maint: numeric names: authors list (link)