Bonaccordite

Last updated
Bonaccordite
Bonaccordite & Trevorite.jpg
Bonaccordite (brown) with trevorite (green)
General
CategoryBorates
Formula
(repeating unit)
Ni2FeBO5
IMA symbol Bna [1]
Strunz classification 6.AB.30
Crystal system Orthorhombic
Crystal class Dipyramidal (mmm)
H-M symbol: (2/m 2/m 2/m)
Space group Pbam
Identification
References [2] [3]

Bonaccordite is a rare mineral discovered in 1974. Its chemical formula is Ni2FeBO5 and it is a mineral of the ludwigite group. It usually crystallizes in long, cylindrical prisms that form within another source. It is named after the area of Bon Accord, where it was first found. There have also been findings of bonaccordite within nuclear plants at multiple companies. It builds up a deposit within the machines and is a very hard mineral to clean out because it is resistant to ordinary techniques.

Contents

History

Bonaccordite was first described in 1974 for an occurrence in the Bon Accord area, Barberton, Transvaal, South Africa. [3] It occurs in a tabular nickeliferous serpentinite, on the margin of an ultramafic intrusive. [3] The actual site of the bonaccordite finding is a possible meteorite site three kilometers west of the Scotia talc mine. [4]

Composition

The chemical formula for bonaccordite is Ni2FeBO5. [4]

Table 1. Chemical data of bonaccordite [4]
Fe2O31.9%
NiO52.7%
MgO0.5%
MnO0.04%
CaO1.5%
SiO20.4%
B2O313.1%
Total100.44%

The two analysts confirmed the presence of boron by using wet-chemical analysis.

Geologic occurrence

Bonaccordite can occur as either a cluster of thin, long prisms or rosette-like radiating groups. The prisms can form veins through other minerals and the radiating groups can occur in minerals like liebenbergite or trevorite. [4] [5] Bonaccordite usually occurs along with trevorite, liebenbergite, népouite, nimite, gaspeitev, and millerite in the area of Bon Accord. [6] All of these minerals crystallize as slender prisms.

Physical properties

Bonaccordite is an opaque mineral with a reddish-brown color. [4] In reflected light, the color is grey with a brownish tinge with strong, reddish-brown internal reflections. [4] In many cases, bonaccordite crystallizes into long, slender cylinders. [7] It has been discovered to be the nickel analogue of ludwigite. [4]

The Mohs hardness for bonaccordite is 7 and its density is 5.17 g/cm3. [7] The optical class is biaxial. [4] Bonaccordite has an orthorhombic crystal system with a point group of 2/m 2/m 2/m. The crystals are structured as elongated prisms within another material. [4] There has been no observed cleavages or twinning. Space group has been determined as [Pbam] and cell dimensions were calculated to a = 9.213(6) b = 12.229(7) c = 3.001(2) Z = 4. [4]

Bonaccordite is insoluble and has only shown reactivity to hydrochloric acid. It is very hard to clean it off of fuel rods in nuclear power reactors where it is sometimes formed. [7] [8] It has been shown to form hydrothermally in near-supercritical water at temperatures above 350 °C and in presence of alkaline conditions. [9] [10] Its formation in PWR reactors can be accelerated by lithium produced in 10B(n,α)7Li reaction with boron in coolant. [9] Bonaccordite can be an indicator of Axial-Offset-Anomaly of neutron flux and power density in PWR power plants. [9] [10]

Related Research Articles

<span class="mw-page-title-main">Boron</span> Chemical element, symbol B and atomic number 5

Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride.

<span class="mw-page-title-main">Nuclear chain reaction</span> When one nuclear reaction causes more

In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Control rod</span> Device used to regulate the power of a nuclear reactor

Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing many neutrons without themselves decaying. These elements have different neutron capture cross sections for neutrons of various energies. Boiling water reactors (BWR), pressurized water reactors (PWR), and heavy-water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons. Each reactor design can use different control rod materials based on the energy spectrum of its neutrons. Control rods have been used in nuclear aircraft engines like Project Pluto as a method of control.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest of this was the Superphénix Sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been intensely studied since the 1950s, as they provide certain advantages over the existing fleet of water cooled and water moderated reactors. These are:

<span class="mw-page-title-main">Light-water reactor</span> Type of nuclear reactor that uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

<span class="mw-page-title-main">Trevorite</span>

Trevorite is a rare nickel iron oxide mineral belonging to the spinel group. It has the chemical formula NiFe3+2O4. It is a black mineral with the typical spinel properties of crystallising in the cubic system, black streaked, infusible and insoluble in most acids.

<span class="mw-page-title-main">Reactor pressure vessel</span> Nuclear power plant component

A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.

<span class="mw-page-title-main">Supercritical water reactor</span> Concept nuclear reactor whose water operates at supercritical pressure

The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and should not be confused with the concept of criticality of the nuclear reactor.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

In applications such as nuclear reactors, a neutron poison is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable effect. However, neutron-absorbing materials, also called poisons, are intentionally inserted into some types of reactors in order to lower the high reactivity of their initial fresh fuel load. Some of these poisons deplete as they absorb neutrons during reactor operation, while others remain relatively constant.

The Clean and Environmentally Safe Advanced Reactor (CAESAR) is a nuclear reactor concept created by Claudio Filippone, the Director of the Center for Advanced Energy Concepts at the University of Maryland, College Park and head of the ongoing CAESAR Project. The concept's key element is the use of steam as a moderator, making it a type of reduced moderation water reactor. Because the density of steam may be controlled very precisely, Filippone claims it can be used to fine-tune neutron fluxes to ensure that neutrons are moving with an optimal energy profile to split 238
92
U
nuclei – in other words, cause fission.

The three primary objectives of nuclear reactor safety systems as defined by the U.S. Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition and prevent the release of radioactive material.

<span class="mw-page-title-main">FLiBe</span> Chemical compound

FLiBe is the name of a molten salt made from a mixture of lithium fluoride (LiF) and beryllium fluoride. It is both a nuclear reactor coolant and solvent for fertile or fissile material. It served both purposes in the Molten-Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

<span class="mw-page-title-main">Bunsenite</span>

Bunsenite is the naturally occurring form of nickel(II) oxide, NiO. It occurs as rare dark green crystal coatings. It crystallizes in the cubic crystal system and occurs as well formed cubic, octahedral and dodecahedral crystals. It is a member of the periclase group.

<span class="mw-page-title-main">Organic nuclear reactor</span> Nuclear reactor that uses organic liquids for cooling and neutron moderation

An organic nuclear reactor, or organic cooled reactor (OCR), is a type of nuclear reactor that uses some form of organic fluid, typically a hydrocarbon substance like polychlorinated biphenyl (PCB), for cooling and sometimes as a neutron moderator as well.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mindat.org entry
  3. 1 2 3 Webmineral data
  4. 1 2 3 4 5 6 7 8 9 10 Handbook of Mineralogy
  5. De Waal S.A., Viljoen E.A., Calk L.C. (1974) Nickel Minerals form Barberton, South Africa: VII Bonaccordite. The Nickel Analogue of Ludwigite. Transactions of the Geological Society of South Africa. 77, p 375
  6. Fleischer M., Cabri L. (1976) New Mineral Names. American Mineralogist. 61, P 502-504.
  7. 1 2 3 Deshon J. (2003) Advisory Committee on Reactor Safeguards Reactor Fuels Subcommittee - Open Session. United States of America Nuclear Regulatory Committee.
  8. Sawicki J.A. (2008) Evidence of Ni2FeBO5 and m-ZrO2 precipitates in fuel rod deposits in AOA-affected high boiling duty PWR core. Journal of Nuclear Materials. 374, p 248-269.
  9. 1 2 3 Sawicki J.A. (2011) Hydrothermal synthesis of Ni2FeBO5 in near-supercritical PWR coolant and possible effects of neutron-induced 10B fission in fuel crud. Journal of Nuclear Materials. 415, p 179-188.
  10. 1 2 Zs Rak, CJ O'Brien, Dongwon Shin, Anders David Andersson, CR Stanek, DW Brenner (2016) Theoretical assessment of bonaccordite formation in pressurized water reactors. Journal of Nuclear Materials, 474, p. 62-64.