Trevorite

Last updated
Trevorite
Trevorite-Nepouite-536294.jpg
Pale green nepouite appears to be far richer on this specimen, than the black with a green or brown tint trevorite. It is hard to distinguish the two.
General
Category Oxide minerals
Spinel group
Spinel structural group
Formula
(repeating unit)
NiFe3+2O4
IMA symbol Trv [1]
Strunz classification 4.BB.05
Dana classification7.2.2.5
Crystal system Cubic
Crystal class Hexoctahedral (m3m)
H-M symbol: (4/m 3 2/m)
Space group Fd3m (no. 227)
Unit cell a = 8.41 Å; Z = 8
Identification
ColorBlack, greenish hue
Crystal habit Granular to massive, rare as minute octahedra
Cleavage None
Fracture Uneven
Tenacity Brittle
Mohs scale hardness5
Luster Metallic to sub-metallic
Streak Brown
Diaphaneity Opaque, transparent in thinnest fragments
Specific gravity 5.164
Refractive index n = 2.41 (calculated)
Other characteristicsHighly magnetic
References [2] [3] [4]

Trevorite is a rare nickel iron oxide mineral belonging to the spinel group. It has the chemical formula NiFe3+2O4. It is a black mineral with the typical spinel properties of crystallising in the cubic system, black streaked, infusible and insoluble in most acids.

There is at least partial solid solution between trevorite and magnetite, with many magnetites from ultramafic rocks containing at least trace amounts of Ni. Fe2+ and Mg2+ may substitute for Ni in trevorite.

Discovery and occurrence

It was first described for an occurrence in the Bon Accord Nickel Deposit, Bon Accord, Barberton, Mpumalanga, South Africa, in 1921 and was named for Major Tudor Gryffydd Trevor (1865–1954) who was a mining inspector in South Africa. [4] [2]

In the Bon Accord deposit it occurred as a contact deposit between an ultramafic intrusion and a quartzite. In an occurrence at Mount Clifford, Australia, it occurs associated with a nickel sulfide orebody adjacent to a gabbro which intruded peridotite. Associated minerals include nimite, willemseite, nickeloan talc, violarite, millerite, reevesite and goethite at Bon Accord; and with native nickel, heazlewoodite and millerite at Mt. Clifford. [2]

It has also been reported from the Logatchev-1 hydrothermal field on the Mid-Atlantic Ridge; in the Hatrurim Formation in the Negev Desert in Israel; the Josephine Creek District, Josephine County, Oregon and the Gabbs District of Nye County, Nevada. [4]

Related Research Articles

<span class="mw-page-title-main">Limonite</span> Hydrated iron oxide mineral

Limonite is an iron ore consisting of a mixture of hydrated iron(III) oxide-hydroxides in varying composition. The generic formula is frequently written as FeO(OH)·nH2O, although this is not entirely accurate as the ratio of oxide to hydroxide can vary quite widely. Limonite is one of the three principal iron ores, the others being hematite and magnetite, and has been mined for the production of iron since at least 400 BC.

<span class="mw-page-title-main">Pentlandite</span> Iron–nickel sulfide

Pentlandite is an iron–nickel sulfide with the chemical formula (Fe,Ni)9S8. Pentlandite has a narrow variation range in nickel to iron ratios (Ni:Fe), but it is usually described as 1:1. In some cases, this ratio is skewed by the presence of pyrrhotite inclusions. It also contains minor cobalt, usually at low levels as a fraction of weight.

<span class="mw-page-title-main">Nickeline</span> Nickel arsenide mineral

Nickeline or niccolite is a mineral consisting primarily of nickel arsenide (NiAs). The naturally-occurring mineral contains roughly 43.9% nickel and 56.1% arsenic by mass, but composition of the mineral may vary slightly.

<span class="mw-page-title-main">Chromite</span> Crystalline mineral

Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4). A substitution of the element aluminium can also occur, leading to hercynite (FeAl2O4). Chromite today is mined particularly to make stainless steel through the production of ferrochrome (FeCr), which is an iron-chromium alloy.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6–7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Galaxite</span>

Galaxite, also known as 'mangan-spinel' is an isometric mineral belonging to the spinel group of oxides with the ideal chemical formula Mn2+Al2O4.

<span class="mw-page-title-main">Hellyerite</span> Carbonate mineral

Hellyerite, NiCO3·6(H2O), is an hydrated nickel carbonate mineral. It is light blue to bright green in colour, has a hardness of 2.5, a vitreous luster, a white streak and crystallises in the monoclinic system. The crystal habit is as platy and mammillary encrustations on its matrix. It is a pentahydrate according to X-ray crystallography. The solid consists of [Ni2(CO3)2(H2O)8] subunits with an extra pair of water of hydration.

<span class="mw-page-title-main">Layered intrusion</span>

A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km2 (39 sq mi) to over 50,000 km2 (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.

<span class="mw-page-title-main">Siegenite</span>

Siegenite (also called grimmite, or nickel cobalt sulfide) is a ternary transition metal dichalcogenide compound with the chemical formula (Ni,Co)3S4. It has been actively studied as a promising material system for electrodes in electrochemical energy applications due to its better conductivity, greater mechanical and thermal stability, and higher performance compared to metal oxides currently in use. Potential applications of this material system include supercapacitors, batteries, electrocatalysis, dye-sensitized solar cells, photocatalysis, glucose sensors, and microwave absorption.

<span class="mw-page-title-main">Gaspéite</span> Nickel carbonate mineral

Gaspéite, a very rare nickel carbonate mineral, with the formula (Ni,Fe,Mg)CO3, is named for the place it was first described, in the Gaspé Peninsula, Québec, Canada.

<span class="mw-page-title-main">Heazlewoodite</span>

Heazlewoodite, Ni3S2, is a rare sulfur-poor nickel sulfide mineral found in serpentinitized dunite. It occurs as disseminations and masses of opaque, metallic light bronze to brassy yellow grains which crystallize in the trigonal crystal system. It has a hardness of 4, a specific gravity of 5.82. Heazlewoodite was first described in 1896 from Heazlewood, Tasmania, Australia.

<span class="mw-page-title-main">Oregonite</span> Mineral

Oregonite, Ni2FeAs2 is a nickel iron arsenide mineral first described from Josephine Creek, Oregon, United States.

<span class="mw-page-title-main">Portlandite</span> Calcium hydroxide mineral

Portlandite is a hydroxide-bearing mineral typically included in the oxide mineral class. It is the naturally occurring form of calcium hydroxide (Ca(OH)2) and the calcium analogue of brucite (Mg(OH)2).

<span class="mw-page-title-main">Bonaccordite</span> Borate mineral

Bonaccordite is a rare mineral discovered in 1974. Its chemical formula is Ni2FeBO5 and it is a mineral of the ludwigite group. It usually crystallizes in long, cylindrical prisms that form within another source. It is named after the area of Bon Accord, where it was first found. There have also been findings of bonaccordite within nuclear plants at multiple companies. It builds up a deposit within the machines and is a very hard mineral to clean out because it is resistant to ordinary techniques.

<span class="mw-page-title-main">Awaruite</span>

Awaruite is a naturally occurring alloy of nickel and iron with a composition from Ni2Fe to Ni3Fe.

<span class="mw-page-title-main">Braggite</span>

Braggite is a sulfide mineral of platinum, palladium and nickel with chemical formula: S. It is a dense, steel grey, opaque mineral which crystallizes in the tetragonal crystal system. It is the central member in the platinum group end-members cooperite and vysotskite.

<span class="mw-page-title-main">Bunsenite</span>

Bunsenite is the naturally occurring form of nickel(II) oxide, NiO. It occurs as rare dark green crystal coatings. It crystallizes in the cubic crystal system and occurs as well formed cubic, octahedral and dodecahedral crystals. It is a member of the periclase group.

Nichromite(Ni,Co,Fe)(Cr,Fe,Al)2O4 is a black cubic metallic mineral and member of the spinel group. Nichromite was originally reported from the Bon Accord nickel deposit in Barberton District, South Africa. Occurring naturally in a nickel deposit, nichromite is named for chromite with dominant nickel.

<span class="mw-page-title-main">Pyrophanite</span>

Pyrophanite is a manganese titanium oxide mineral with formula: MnTiO3. It is a member of the ilmenite group. It is a deep red to greenish black mineral which crystallizes in the trigonal system.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Handbook of Mineralogy
  3. Trevorite on webmineral.com
  4. 1 2 3 Trevorite on Mindat.org