Bone segment navigation

Last updated

Bone segment navigation is a surgical method used to find the anatomical position of displaced bone fragments in fractures, or to position surgically created fragments in craniofacial surgery. Such fragments are later fixed in position by osteosynthesis. It has been developed for use in craniofacial and oral and maxillofacial surgery.

Contents

After an accident or injury, a fracture can be produced and the resulting bony fragments can be displaced. In the oral and maxillofacial area, such a displacement could have a major effect both on facial aesthetics and organ function: a fracture occurring in a bone that delimits the orbit can lead to diplopia; a mandibular fracture can induce significant modifications of the dental occlusion; in the same manner, a skull (neurocranium) fracture can produce an increased intracranial pressure.[ citation needed ]

In severe congenital malformations of the facial skeleton surgical creation of usually multiple [1] [2] bone segments is required with precise movement of these segments to produce a more normal face.

Surgical planning and surgical simulation

An osteotomy is a surgical intervention that consists of cutting through bone and repositioning the resulting fragments in the correct anatomical place. To insure optimal repositioning of the bony structures by osteotomy, the intervention can be planned in advance and simulated. The surgical simulation is a key factor in reducing the actual operating time. Often, during this kind of operation, the surgical access to the bone segments is very limited by the presence of the soft tissues: muscles, fat tissue and skin - thus, the correct anatomical repositioning is very difficult to assess, or even impossible. Preoperative planning and simulation on models of the bare bony structures can be done. An alternate strategy is to plan the procedure entirely on a CT scan generated model and output the movement specifications purely numerically. [3]

Materials and devices needed for preoperative planning and simulation

The osteotomies performed in orthognathic surgery are classically planned on cast models of the tooth-bearing jaws, fixed in an articulator. For edentulous patients, the surgical planning may be made by using stereolithographic models. These tridimensional models are then cut along the planned osteotomy line, slid and fixed in the new position. Since the 1990s, modern techniques of presurgical planning were developed – allowing the surgeon to plan and simulate the osteotomy in a virtual environment, based on a preoperative CT or MRI; this procedure reduces the costs and the duration of creating, positioning, cutting, repositioning and refixing the cast models for each patient.

Transferring the preoperative planning to the operating theatre

Schematic representation of the principle of bone segment navigation; DRF1 and DRF2 = IR SSNSchema.jpg
Schematic representation of the principle of bone segment navigation; DRF1 and DRF2 = IR

The usefulness of the preoperative planning, no matter how accurate, depends on the accuracy of the reproduction of the simulated osteotomy in the surgical field. The transfer of the planning was mainly based on the surgeon's visual skills. Different guiding headframes were further developed to mechanically guide bone fragment repositioning. [ citation needed ]

Such a headframe is attached to the patient's head, during CT or MRI, and surgery. There are certain difficulties in using this device. First, exact reproducibility of the headframe position on the patient's head is needed, both during CT or MRI registration, and during surgery. The headframe is relatively uncomfortable to wear, and very difficult or even impossible to use on small children, who can be uncooperative during medical procedures. For this reason headframes have been abandoned in favor of frameless stereotaxy of the mobilized segments with respect to the skull base. Intraoperative registration of the patient's anatomy with the computer model is done such that pre-CT placement of fiducial points is not necessary.[ citation needed ]

Using the SSN in the operating theatre; 1=IR receiver, 2 and 4=IR Reference devices, 3=SSN-Workstation SSNimOP.jpg
Using the SSN in the operating theatre; 1=IR receiver, 2 and 4=IR Reference devices, 3=SSN-Workstation

Surgical Segment Navigator

Initial bone fragment positioning efforts using an electro-magnetic system were abandoned due to the need for an environment without ferrous metals. [4] In 1991 Taylor at IBM working in collaboration with the craniofacial surgery team at New York University developed a bone fragment tracking system based on an infrared (IR) camera and IR transmitters attached to the skull. [5] [6] This system was patented by IBM in 1994. [7] At least three IR transmitters are attached in the neurocranium area to compensate the movements of the patient's head. There are three or more IR transmitters are attached to the bones where the osteotomy and bone repositioning is about to be performed onto. The 3D position of each transmitter is measured by the IR camera, using the same principle as in satellite navigation. A computer workstation is constantly visualizing the actual position of the bone fragments, compared with the predetermined position, and also makes real-time spatial determinations of the free-moving bony segments resulting from the osteotomy. Thus, fragments can be very accurately positioned into the target position, predetermined by surgical simulation. More recently a similar system, the Surgical Segment Navigator (SSN), was developed in 1997 at the University of Regensburg, Germany, with the support of the Carl Zeiss Company. [8]

Clinical use of bone segment navigation

The first clinical report of the use of this type of system was by Watzinger et al. in 1997 [9] in the reposition of zygoma fractures using a mirrored image from the normal side as a target. In 1998 the system was reported by Marmulla and Niederdellmann to track LeFort I osteotomy position as well as zygoma fracture repositioning. [8] In 1998 Cutting et al. [10] reported use of the system to track multisegment midface osteotomies in major craniofacial malformations.

Related Research Articles

<span class="mw-page-title-main">Rhinoplasty</span> Surgical procedure to enhance or reconstruct a human nose

Rhinoplasty, commonly called nose job, medically called nasal reconstruction is a plastic surgery procedure for altering and reconstructing the nose. There are two types of plastic surgery used – reconstructive surgery that restores the form and functions of the nose and cosmetic surgery that changes the appearance of the nose. Reconstructive surgery seeks to resolve nasal injuries caused by various traumas including blunt, and penetrating trauma and trauma caused by blast injury. Reconstructive surgery can also treat birth defects, breathing problems, and failed primary rhinoplasties. Rhinoplasty may remove a bump, narrow nostril width, change the angle between the nose and the mouth, or address injuries, birth defects, or other problems that affect breathing, such as a deviated nasal septum or a sinus condition. Surgery only on the septum is called a septoplasty.

Facial feminization surgery (FFS) is a set of reconstructive surgical procedures that alter typically male facial features to bring them closer in shape and size to typical female facial features. FFS can include various bony and soft tissue procedures such as brow lift, rhinoplasty, cheek implantation, and lip augmentation.

<span class="mw-page-title-main">Rhytidectomy</span> One of cosmetic surgery

A facelift, technically known as a rhytidectomy, is a type of cosmetic surgery procedure used to give a more youthful facial appearance. There are multiple surgical techniques and exercise routines. Surgery usually involves the removal of excess facial skin, with or without the tightening of underlying tissues, and the redraping of the skin on the patient's face and neck. Exercise routines tone underlying facial muscles without surgery. Surgical facelifts are effectively combined with eyelid surgery (blepharoplasty) and other facial procedures and are typically performed under general anesthesia or deep twilight sleep.

Chin augmentation using surgical implants can alter the underlying structure of the face, providing better balance to the facial features. The specific medical terms mentoplasty and genioplasty are used to refer to the reduction and addition of material to a patient's chin. This can take the form of chin height reduction or chin rounding by osteotomy, or chin augmentation using implants. Improving the facial balance is commonly performed by enhancing the chin using an implant inserted through the mouth. The goal is to provide a suitable projection of the chin as well as the correct height of the chin which is in balance with the other facial features.

<span class="mw-page-title-main">Orthognathic surgery</span> Surgery of the jaw

Orthognathic surgery, also known as corrective jaw surgery or simply, jaw surgery, is surgery designed to correct conditions of the jaw and lower face related to structure, growth, airway issues including sleep apnea, TMJ disorders, malocclusion problems primarily arising from skeletal disharmonies, and other orthodontic dental bite problems that cannot be treated easily with braces, as well as the broad range of facial imbalances, disharmonies, asymmetries, and malproportions where correction may be considered to improve facial aesthetics and self esteem.

<span class="mw-page-title-main">Microtia</span> Medical condition

Microtia is a congenital deformity where the auricle is underdeveloped. A completely undeveloped pinna is referred to as anotia. Because microtia and anotia have the same origin, it can be referred to as microtia-anotia. Microtia can be unilateral or bilateral. Microtia occurs in 1 out of about 8,000–10,000 births. In unilateral microtia, the right ear is most commonly affected. It may occur as a complication of taking Accutane (isotretinoin) during pregnancy.

<span class="mw-page-title-main">Hypertelorism</span> Abnormally increased distance between two body parts, usually the eyes

Hypertelorism is an abnormally increased distance between two organs or bodily parts, usually referring to an increased distance between the orbits (eyes), or orbital hypertelorism. In this condition the distance between the inner eye corners as well as the distance between the pupils is greater than normal. Hypertelorism should not be confused with telecanthus, in which the distance between the inner eye corners is increased but the distances between the outer eye corners and the pupils remain unchanged.

<span class="mw-page-title-main">Cheek augmentation</span> Cosmetic procedure intended to emphasize a persons cheeks

Cheek augmentation is a cosmetic surgical procedure that is intended to emphasize the cheeks on a person's face. To augment the cheeks, a plastic surgeon may place a solid implant over the cheekbone. Injections with the patients' own fat or a soft tissue filler, like Restylane, are also popular. Rarely, various cuts to the zygomatic bone (cheekbone) may be performed. Cheek augmentation is commonly combined with other procedures, such as a face lift or chin augmentation.

Velopharyngeal insufficiency is a disorder of structure that causes a failure of the velum to close against the posterior pharyngeal wall during speech in order to close off the nose during oral speech production. This is important because speech requires sound and airflow to be directed into the oral cavity (mouth) for the production of all speech sound with the exception of nasal sounds. If complete closure does not occur during speech, this can cause hypernasality and/or audible nasal emission during speech. In addition, there may be inadequate airflow to produce most consonants, making them sound weak or omitted.

Coccygectomy is a surgical procedure in which the coccyx or tailbone is removed. It is considered a required treatment for sacrococcygeal teratoma and other germ cell tumors arising from the coccyx. Coccygectomy is the treatment of last resort for coccydynia which has failed to respond to nonsurgical treatment. Non surgical treatments include use of seat cushions, external or internal manipulation and massage of the coccyx and the attached muscles, medications given by local injections under fluoroscopic guidance, and medications by mouth.

Jaw reduction or mandible angle reduction is a type of surgery to narrow the lower one-third of the face—particularly the contribution from the mandible and its muscular attachments. There are several techniques for treatment—including surgical and non-surgical methods. A square lower jaw can be considered a masculine trait, especially in Asian countries. As a result, whereas square lower jaws are often considered a positive trait in men, a wide mandible can be perceived as discordant or masculine on women, or sometimes in certain men, particularly when there is asymmetry.

<span class="mw-page-title-main">Surgical segment navigator</span>

The surgical segment navigator (SSN) is a computer-based system for use in surgical navigation. It is integrated into a common platform, together with the surgical tool navigator (STN), the surgical microscope navigator (SMN) and the 6DOF manipulator (MKM), developed by Carl Zeiss.

Patient registration is used to correlate the reference position of a virtual 3D dataset gathered by computer medical imaging with the reference position of the patient. This procedure is crucial in computer assisted surgery, in order to insure the reproducitibility of the preoperative registration and the clinical situation during surgery. The use of the term "patient registration" out of this context can lead to a confusion with the procedure of registering a patient into the files of a medical institution.

Computer-assisted surgery (CAS) represents a surgical concept and set of methods, that use computer technology for surgical planning, and for guiding or performing surgical interventions. CAS is also known as computer-aided surgery, computer-assisted intervention, image-guided surgery, digital surgery and surgical navigation, but these are terms that are more or less synonymous with CAS. CAS has been a leading factor in the development of robotic surgery.

<span class="mw-page-title-main">Surgical planning</span>

Surgical planning is the preoperative method of pre-visualising a surgical intervention, in order to predefine the surgical steps and furthermore the bone segment navigation in the context of computer-assisted surgery. The surgical planning is most important in neurosurgery and oral and maxillofacial surgery. The transfer of the surgical planning to the patient is generally made using a medical navigation system.

<span class="mw-page-title-main">Laboratory Unit for Computer Assisted Surgery</span>

Laboratory Unit for Computer Assisted Surgery is a system used for virtual surgical planning. Starting with 1998, LUCAS was developed at the University of Regensburg, Germany, with the support of the Carl Zeiss Company. The resulting surgical planning is then reproduced onto the patient by using a navigation system. In fact, LUCAS is integrated into the same platform together with the Surgical Segment Navigator (SSN), the Surgical Tool Navigator (STN), the Surgical Microscope Navigator (SMN) and the 6DOF Manipulator, also from the Carl Zeiss Company.

<span class="mw-page-title-main">Frontonasal dysplasia</span> Medical condition

Frontonasal dysplasia (FND) is a congenital malformation of the midface. For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism, a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele or V-shaped hair pattern on the forehead. The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.

Zygoma reduction, also known as cheekbone reduction surgery, is a surgery used to reduce the facial width by excising part of the zygomatic bone and arch. Wide cheekbones are a characteristic facial trait of Asians, whose skull shapes tend to be more brachycephalic in comparison with Caucasian counterparts, whose skull shapes tend to be more dolichocephalic .This surgery is popular among Asians due to their inherent wide cheekbones. Due to the advanced surgical skills of Korean surgeons who perform facial contouring surgeries, the number of Asian people undergoing this surgery is increasing.

A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.

<span class="mw-page-title-main">Trapeziometacarpal osteoarthritis</span> Medical condition

Trapeziometacarpal osteoarthritis (TMC OA) is, also known as osteoarthritis at the base of the thumb, thumb carpometacarpal osteoarthritis, basilar (or basal) joint arthritis, or as rhizarthrosis. This joint is formed by the trapezium bone of the wrist and the metacarpal bone of the thumb. This is one of the joints where most humans develop osteoarthritis with age. Osteoarthritis is age-related loss of the smooth surface of the bone where it moves against another bone (cartilage of the joint). In reaction to the loss of cartilage, the bones thicken at the joint surface, resulting in subchondral sclerosis. Also, bony outgrowths, called osteophytes (also known as “bone spurs”), are formed at the joint margins.

References

  1. Obwegeser, HL (1969). "Surgical correction of small or retrodisplaced maxillae. The "dish-face" deformity". Plast Reconstr Surg. 43 (4): 351–65. doi:10.1097/00006534-196904000-00003. PMID   5776622. S2CID   41856712.
  2. Cutting, C; Grayson, B; Bookstein, F; Kim, H; McCarthy, J (1991). "The case for multiple cranio-maxillary osteotomies in Crouzon's disease.". In Caronni, EP (ed.). Craniofacial Surgery 3. Bologna: Monduzzi Editore. ISBN   9788832300000.
  3. Cutting, C; Bookstein, F; Grayson, B; Fellingham, L; McCarthy, J (1986). "Three dimensional computer aided design of craniofacial surgical procedures: Optimization & interaction with cephalometric and CT-based models". Plast. Reconstr. Surg. 77 (6): 877–87. doi:10.1097/00006534-198606000-00001. PMID   3714886. S2CID   41453653.
  4. Cutting, C; Grayson, B; Kim, H (1990). "Precision multi-segment bone positioning using computer aided methods in craniofacial surgical procedures". Proc. IEEE Eng. Med. Biol. Soc. 12: 1926–7.
  5. Taylor, RH; Cutting, C; Kim, Y; et al. (1991). A Model-Based Optimal Planning and Execution System with Active Sensing and Passive Manipulation for Augmentation of Human Precision in Computer-Integrated Surgery. Proceedings International Symposium on Experimental Robotics. Toulouse, France: Springer-Verlag.
  6. Taylor, RH; Paul, H; Cutting, C; et al. (1992). "Augmentation of Human Precision in Computer Integrated Surgery". Innovation et Technologie en Biologie et Medicine. 13 (4): 450–68.
  7. Taylor, R; Kim, Y (inventors) (1994). Signaling device and method for monitoring positions in a surgical operation. Ossining, NY: United States Patent 5,279,309.
  8. 1 2 Marmulla R, Niederdellmann H: Computer-assisted Bone Segment Navigation, J Craniomaxillofac Surg 26: 347-359, 1998
  9. Watzinger, F; Wanschitz, F; Wagner, A; et al. (1997). "Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma". J Craniomaxillofac Surg. 25 (4): 198–202. doi:10.1016/s1010-5182(97)80076-5. PMID   9268898.
  10. Cutting, C; Grayson, B; McCarthy, J; et al. (1998). "A virtual reality system for bone fragment positioning in multisegment craniofacial surgical procedures". Plast Reconstr Surg. 102 (7): 2436–43. doi:10.1097/00006534-199812000-00027. PMID   9858182.