Occlusion (dentistry)

Last updated

Occlusion, in a dental context, means simply the contact between teeth. More technically, it is the relationship between the maxillary (upper) and mandibular (lower) teeth when they approach each other, as occurs during chewing or at rest.

Contents

Static occlusion refers to contact between teeth when the jaw is closed and stationary, while dynamic occlusion refers to occlusal contacts made when the jaw is moving. [1]

The masticatory system also involves the periodontium, the TMJ (and other skeletal components) and the neuromusculature, therefore the tooth contacts should not be looked at in isolation, but in relation to the overall masticatory system.

Anatomy of Masticatory System

Anatomy of the temporomandibular joint - RCP = Here we see the condyle when teeth are in the retruded contact position, a reproducible position. ICP = Here we see the condyle position when teeth are in the intercuspal position. R = Mandibular opening with rotation of the condylar heads but without translation. T = Maximum opening of the mandible combined rotation and translation of condylar heads. (Institute of Dentistry, Aberdeen University) TMJ movements.jpg
Anatomy of the temporomandibular joint - RCP = Here we see the condyle when teeth are in the retruded contact position, a reproducible position. ICP = Here we see the condyle position when teeth are in the intercuspal position. R = Mandibular opening with rotation of the condylar heads but without translation. T = Maximum opening of the mandible combined rotation and translation of condylar heads. (Institute of Dentistry, Aberdeen University)

One cannot fully understand occlusion without an in depth understanding of the anatomy including that of the teeth, TMJ, musculature surrounding this and the skeletal components.

The Dentition and Surrounding Structures

The human dentition consists of 32 permanent teeth and these are distributed between the alveolar bone of the maxillary and mandibular arch. Teeth consist of two parts: the crown, which is visible in the mouth and lies above the gingival soft tissue and the roots, which are below the level of the gingiva and in the alveolar bone.

The periodontal ligament unites the cementum on the outside of the root and the alveolar bone. This bundle of connective tissue fibres is vital in dissipating forces that are applied to the underlying bone during the contact of teeth in function. [2]

The teeth are highly specialised and different teeth are involved in specific functions. The masticatory system is largely influenced by these intra and inter-arch relationships and a wider understanding of the anatomy can greatly benefit those who want to understand occlusion.
Skeletal Components

The maxilla forms a crucial aspect of the upper facial skeleton. Two irregularly shaped bones fuse at the intermaxillary suture during development forming the upper jaw. This forms the palate of the oral cavity and also supports the alveolar ridges that hold the upper teeth in place. [3] The lower facial skeleton on the other hand, is formed of the mandible, a U-shaped bone, which supports the lower teeth and also forms part of the TMJ. The mandibular condyle and the squamous portion of the temporal bone, at the base of the cranium articulate with one another. [4]

TMJ

The TMJ is formed from the temporal bone of the cranium, specifically the glenoid fossa and articular tubercle and the condyle of the mandible, with a fibrocartilaginous disc lying in between. It is classified as a ginglymoarthrodial joint [5] and can perform a range of gliding and hinge type movements. The disc, which lies in between is composed of dense fibrous tissue and is predominantly avascular and lacking nerves. [2]

Muscles

There are various muscles that contribute to occlusion of the teeth including the muscles of mastication and other accessory muscles. The temporalis, masseter, medial and lateral pterygoids are the muscles of mastication and these contribute to the elevation, depression, protrusion and retraction of the mandible. The anterior and posterior belly of the digastric are also involved in the depression of the mandible and elevation of the hyoid bone and are therefore relevant to the masticatory system. [2]

Ligaments

There are various ligaments associated with the TMJ and these limit and restrict border movements by acting as passive restraining devices. They do not contribute to joint function, rather exert a protective role. The key ligaments relevant to the TMJ are:

Development of occlusion

Leeway space is the size differential between the primary posterior teeth (C,D,E) and the permanent teeth (canine, first and second pre-molar). Maxillary space of 1.5mm, mandibular 2.5mm can be seen. (Institute of Dentistry, Aberdeen University) Leeway space.jpg
Leeway space is the size differential between the primary posterior teeth (C,D,E) and the permanent teeth (canine, first and second pre-molar). Maxillary space of 1.5mm, mandibular 2.5mm can be seen. (Institute of Dentistry, Aberdeen University)

As the primary (baby) teeth begin to erupt at 6 months of age, the maxillary and mandibular teeth aim to occlude with one another. The erupting teeth are moulded into position by the tongue, the cheeks and lips during development. Upper and lower primary teeth should be correctly occluding and aligned after 2 years whilst they are continuing to develop, with full root development complete at 3 years of age.

Around a year after development of the teeth is complete, the jaws continue to grow which results in spacing between some of the teeth ( diastema ). This effect is greatest in the anterior (front) teeth and can be seen from around age 4 – 5 years. [6] This spacing is important as it allows space for the permanent (adult) teeth to erupt into the correct occlusion, and without this spacing there is likely to be crowding of the permanent dentition.

In order to fully understand the development of occlusion and malocclusion, it is important to understand the premolar dynamics in the mixed dentition stage. The mixed dentition stage is when both primary and permanent teeth are present. The permanent premolars erupt ~9–12 years of age, replacing the primary molars. The erupting premolars are smaller than the teeth they are replacing and this difference in space between the primary molars and their successors (1.5mm for maxillary, 2.5mm for mandibular [7] ), termed Leeway Space. This allows the permanent molars to drift mesially into the spaces and develop a Class I occlusion.

Incisor and molar classification

Classification of occlusion and malocclusion plays an important role in diagnosis and treatment planning in orthodontics. In order to describe the relationship of the maxillary molars to the mandibular molars, the Angle’s classification of malocclusion has commonly been used for many years. [8] This system has also been adapted in an attempt to classify the relationship between the incisors of the two arches. [9]

Incisor Relationship

When describing the relationship between maxillary and mandibular incisors, the following categories make up Angle's incisal relationship classification:

Molar Relationship

Molar relationship classification, observed when locating the mesial buccal cusp of the maxillary first molar and buccal groove of the mandibular first molar. (Institute of Dentistry, Aberdeen University) Molar relationship.jpg
Molar relationship classification, observed when locating the mesial buccal cusp of the maxillary first molar and buccal groove of the mandibular first molar. (Institute of Dentistry, Aberdeen University)

When discussing the occlusion of the posterior teeth, the classification refers to the first molars and may be divided into three categories:

Any deviation from the normal relation of teeth (Class I) is considered a malocclusion.

Class I relationships are thought to be “ideal”, however this classification does not take into consideration the positions of the two TMJ’s. Class II and III molar and incisor relationships are thought to be forms of malocclusion, however not all of these are severe enough to require orthodontic treatment. The Index of Orthodontic Treatment Need is a system that attempts to rank malocclusions in terms of significance of various occlusal traits and perceived aesthetic impairment. [11] The index identifies those who would benefit most from orthodontic treatment and onward referral to an orthodontist.

Occlusal terminology

Intercuspal Position -The relationship between the mandible and the maxilla when the teeth are maximally meshed. It is the most cranial position of the mandible (Institute of Dentistry Aberdeen University) ICP2.jpg
Intercuspal Position -The relationship between the mandible and the maxilla when the teeth are maximally meshed. It is the most cranial position of the mandible (Institute of Dentistry Aberdeen University)

Intercuspal Position (ICP), also known as Habitual Bite, Habitual Position or Bite of Convenience, is defined at the position where the maxillary and mandibular teeth fit together in maximum interdigitation. This position is usually the most easily recorded and is almost always the occlusion the patient closes into when they are asked to 'bite together'. This is the occlusion that the patient is accustomed to, hence sometimes termed the Habitual Bite. [1]

Centric relation(CR) describes a reproducible jaw relationship (between the mandible and maxilla) and is independent of tooth contact. This is the position in which the mandibular condyles are located in the fossae in an antero-superior position against the posterior slope of the articular eminence. [12] It is said that in CR, the muscles are in their most relaxed and least stressed state. This position is not influenced by muscle memory, but rather by the ligament which suspend the condyles within the fossa. Therefore it is the position that dentists use to create new occlusal relationships as for example, while making maxillary and mandibular complete dentures.

When the mandible is in this retruded position, it opens and closes on an arc of curvature around an imaginary axis drawn through the centre of the head of both condyles. This imaginary axis is termed the terminal hinge axis. The first tooth contact that occurs when the mandible closes in the terminal hinge axis position, is termed Retruded Contact Position (RCP). [13] RCP can be reproduced within 0.08mm of accuracy due to the non-elastic TMJ capsule and restriction by the capsular ligaments, thus it can be considered a ‘border movement’ in Posselt’s envelope. [14]

Posselt's Envelope of Border Movements - Pr - Maximum protrusion, E - Edge to edge position of the incisors, ICP/RCP - Condylar sliding movement represented clinically as tooth to tooth contact positions, R - Maximum mandibular opening condyles rotate but do not translate, T - Maximum mandibular opening with maximum translation of the condylar heads (Institute of Dentistry, University of Aberdeen) Posselts envolope of movement.jpg
Posselt's Envelope of Border Movements - Pr - Maximum protrusion, E - Edge to edge position of the incisors, ICP/RCP - Condylar sliding movement represented clinically as tooth to tooth contact positions, R - Maximum mandibular opening condyles rotate but do not translate, T - Maximum mandibular opening with maximum translation of the condylar heads (Institute of Dentistry, University of Aberdeen)

Centric Occlusion (CO) is a confusing term, and is often incorrectly used synonymously with RCP. Both terms are used to define a position where the condyles are in CR, however RCP describes the initial tooth contact on closure, however this may be an interference contact. On the other hand, CO refers to the occlusion where the teeth are in maximum intercuspation in CR. Posselt (1952) determined that only in 10% of natural tooth and jaw relationships does ICP = CO [14] (maximum intercuspation in CR) and so the term RCP is more appropriate when discussing the occlusion that occurs when the condyles are in their retruded position. CO is a term that is more relevant to complete denture application or where multiple fixed unit prosthodontics are provided, where the occlusion is arranged so that when the mandible is in CR, the teeth are interdigitating.

Posselt's Envelope of Border Movements

Posselt’s Envelope of Border Movement (often referred to as the 'border movements of the mandible') is a schematic diagram of the maximum jaw movement in three planes (sagittal, horizontal and frontal). This encompasses all movements away from RCP, and includes:

Guidance, natural teeth and function

Bennet Angle - The TV (orbiting) condyle, as the mandible moves (progressive side shift). (Institute of Dentistry Aberdeen University) Bennet Angle.jpg
Bennet Angle - The TV (orbiting) condyle, as the mandible moves (progressive side shift). (Institute of Dentistry Aberdeen University)

Mandibular movements are guided by two different systems; the ‘posterior’ guidance system and the ‘anterior’ guidance system

Posterior guidance system

Posterior guidance refers to TMJ articulations and associated structures. It is the condyles within the fossa and the associated muscles and ligaments together with its neuromuscular link that determines mandibular movements. Lateral, protrusive and repressive excursions of the mandible are guided by the posterior system.

Lateral excursions

It is important to define the movement of the condyles in lateral excursions:

- Working condyle: This is the condyle closest to the side which the mandible is moving (e.g. if the mandible moves laterally to the right, the right condyle is the working side condyle)

- Non-working condyle: This is the side to which the mandible is moving away from (e.g. if the mandible moves laterally to the right, the left condyle is the non-working side condyle)

Protrusive movements

Retrusive movements

We can not influence the posterior guidance system through dental restorative treatment.

Anterior guidance system

Anterior guidance refers to the influence of contacting teeth on the paths of mandibular movements. The tooth contacts may be anterior, posterior tooth contacts or both - however termed anterior guidance as these contacts are still anterior to the TMJ. This can be further classified into:

Canine guidance during right lateral excursions (Institute of Dentistry University of Aberdeen) Canine guidance.jpg
Canine guidance during right lateral excursions (Institute of Dentistry University of Aberdeen)

Canine Guidance

Group Function

Incisal Guidance

In restorative treatment, it is possible to manipulate and design anterior guidance systems that is in harmony with the masticatory system.

Clinical relevance of guidance

Tooth contact involved in guidance is particularly important as these occlude a vast number of times per day and so need to be able to resist both heavy and non-axial occlusal loads. When restoring the anterior guidance system should be compatible with the posterior guidance system. This means that excessive strain should not be applied on the posterior guidance system which is limited by the ligamemtous structures.

Upon restoration of the occlusal surfaces of teeth, it is likely to change the occlusion and therefore guidance systems. It is unlikely the TMJ will adapt to these changes in occlusion, but rather the teeth adapt to the new occlusion through tooth wear, tooth movement or fracture. For this reason, it is important to consider these guidance concepts when providing restorations. Guidance should also be considered before restorations as it should not be expected for a heavily restored tooth to provide guidance alone as this leaves the tooth vulnerable to fracture during function.

Organisation of the occlusion

The arrangement of teeth in function is important and over the years three recognised concepts have been developed to describe how teeth should and should not contact:

  1. Bilateral balanced occlusion
  2. Unilateral balanced occlusion
  3. Mutually protected occlusion

Bilateral balanced occlusion

This concept is based on the curve of Spee and curve of Wilson and is becoming outdated for the restored natural dentition. However, it still finds application in removable prosthodontics. This scheme involves contacts on as many teeth as possible (both on the working and non-working side) in all excursive movements of the mandible. This is especially important in the case of complete denture provision as contacting teeth on the NWS help stabilise the denture bases in mandibular movement. [15] It was believed in the 1930s that this arrangement was ideal for the natural dentition when providing full occlusal reconstruction in order to distribute the stresses. However, it was found that the lateral forces placed on the restored posterior teeth produced damaging effects on the restorations. [16]

Unilateral balanced occlusion

On the other hand, unilateral balanced occlusion is a widely used tooth arrangement that is used in current dentistry and is commonly known as group function. This concept is based on the observation that NWS contacts were destructive [17] and therefore the teeth on the NWS should be free of any eccentric contacts, and instead the contacts should be distributed on the WS thus sharing the occlusal load. Group function is used when canine guidance cannot be achieved and also in the Pankey-Mann Schuyler (PMS) approach where it was deemed better than canine guidance as it distributed the loading on the WS better. [18]

Mutually protected occlusion

Mutually protected occlusion - Posterior disocclusion of teeth as the mandible is protruded (Institute of Dentistry Aberdeen University) Posterior disocclusion.jpg
Mutually protected occlusion - Posterior disocclusion of teeth as the mandible is protruded (Institute of Dentistry Aberdeen University)

The Journal of Prosthetic Dentistry (2017) defines mutually protected occlusion as ‘an occlusal scheme in which the posterior teeth prevent excessive contact of the anterior teeth in maximal intercuspal position, and the anterior teeth disengage the posterior teeth in all mandibular excursive movements’ [12]

In eccentric movements, damaging forces are applied to the posterior teeth and the anteriors are best suited to receiving these. Therefore during protrusive movements, the contact or guidance of the anteriors should be adequate to disocclude and protect the posterior teeth.

In contrast, the posterior teeth are more suited to accept the forces that are applied during closure of the mandible. This is because the posteriors are positioned so the forces are applied directly along the long axis of the tooth and are able to dissipate them efficiently whereas the anteriors cannot accept these heavy forces as well due to their labial positioning and angulation. It is therefore accepted that the posterior teeth should have heavier contacts than the anteriors in ICP and act as a stop for vertical closure.

Additionally, in lateral excursions either canine or group function should act to disclude the posterior teeth on the WS because, as described above, the anterior teeth are best suited to dissipate damaging horizontal forces, as well as the contact being further away from the TMJ, so the forces created are decreased in strength. Group function or canine guidance should also provide disocclusion of the teeth on the NWS as the amount and direction of force applied to the TMJ and teeth can be destructive due to an increase in muscle activity. [19] An absence of NWS contacts also allows smooth movement of the working side condyle as a contact may disengage the guidance of the condyle and therefore cause an unstable mandibular relationship. [20]

Deflective contacts and interferences

A deflective contact is a contact that diverts the mandible from its intended movement. [12] An example of this is when the mandible is deflected into ICP by the RCP-ICP slide, which path is determined by the deflective tooth contacts. This is often involved in function (e.g. chewing), however in some cases these deflective contacts can be damaging and may lead to pain around the tooth (often associated with bruxism). [21] However, some patients may be totally unaware of similar deflective contacts suggesting that it is the patient's adaptability rather than the contact that may influence the patient's presentation.

An occlusal interference is any tooth contact that prevents, or hinders harmonious mandibular movement (an undesirable tooth contact). [12]

Non-working side interference (photograph) detectable with articulating paper or plastic shimstock, as the mandible moves to the left (working side). (Institute of Dentistry Aberdeen University) NWSI.jpg
Non-working side interference (photograph) detectable with articulating paper or plastic shimstock, as the mandible moves to the left (working side). (Institute of Dentistry Aberdeen University)

The occlusal interferences may be classified as follows: [22]

  1. Working Side Interference: When there is a heavy or early tooth contact between the maxillary and mandibular teeth on the side that the mandible is moving towards, and this contact may or may not discludes the anteriors. [18]
  2. Non-Working Side Interference: An occlusal contact on the side the mandible is moving away from that prevents harmonious movement of the mandible. These have the potential to be more destructive in comparison to WS interferences due to the obliquely directed forces. [23]
  3. Protrusive Interference: Contacts that occur between the distal aspects of the maxillary posterior teeth and the mesial aspect of the mandibular posterior teeth. These interferences are potentially very damaging and may even cause an inability to incise properly due to the close proximity of the interference to the muscle.

When the dentist is providing restorations, it is important that these do not create an interference, otherwise the restoration will receive increased loading. As for deflective contacts, interferences may also be associated with parafunction such as bruxism (although evidence is weak) and may adversely affect the distribution of heavy occlusal forces. Interferences may also cause pain in the masticatory muscles due to altering their activity, [24] however there is large controversy and debate as to whether there is a relationship between occlusion and temporomandibular disorders. Almost all dentate individuals have occlusal interferences, and therefore they are not seen to be an etiology of all TMDs. When there is an acute change or significant instability in the occlusal condition and subsequently represents an etiological factor for a TMD, occlusal treatment is required.

Occlusal adjustment (removal of occlusal interferences) may be carried out in order to obtain a stable occlusal relationship and is achieved by selectively grinding the occlusal interferences or through wear of a hard occlusal splint to ensure true retruded relationship is established.

'Ideal' occlusion

When there is an absence of symptoms and the masticatory system is functioning efficiently, the occlusion is considered normal or physiological. [22] It is understood that no such ‘ideal’ occlusion exists for everyone, but rather each individual has their own 'ideal occlusion'. This is not focused on any specific occlusal configuration but rather occurs when the person’s occlusion is in harmony with the rest of the stomatognathic system (TMJ, teeth and supporting structures, and the neuromuscular elements).

However, an optimal functional occlusion is important to consider when providing restorations as this helps to understand what is trying to be achieved. It is defined in established texts [2] as:

1. Centric occlusion and centric relation being in harmony (CO=CR)

2. Freedom in CO

3. Immediate and lasting posterior disocclusion upon mandibular movement

4. Canine guidance is considered the best anterior guidance system

It is necessary to understand the concepts that influence the function and health of the masticatory system in order to prevent, minimise or eliminate any breakdown or trauma to the TMJs or teeth.

Patient adaptability

There are various factors that play a role in the adaptive capability of a patient with regards to changes in occlusion. Factors such as the central nervous system and the mechanoreceptors in the periodontium, mucosa and dentition are all of importance here. It is in fact, the somatosensory input from these sources that determines whether an individual is able to adapt to changes in the occlusion, opposed to the occlusal scheme itself. [5] Failure of adaptation to minor changes in the occlusion can occur, although rare. It is thought that patients who are increasingly vigilant to any changes in the oral environment are less likely to adapt to any occlusal changes. Psychological and emotional stress can also contribute to the patient's ability to adapt as these factors have an impact on the central nervous system. [22]

Occlusal examination

In individuals with unexplained pain, fracture, drifting, mobility and tooth wear, a full occlusal examination is vital. Similarly when complex restorative work is planned it is also essential to identify whether any occlusal changes are required prior to the provision of definitive restoration [25] In some people even minor discrepancies in the occlusion can lead to symptoms involving the TMJ or acute orofacial pain so it is important to identify and eradicate this cause. [6]

Occlusal Examination Instruments: Willis gauge, Mosquito forceps with Shim stock, Miller's forceps with thin blue and red articulating paper, College tweezers, Dental probe. Dental mirror (From left to right) by University of Aberdeen. Occlusal Examination Instruments.jpg
Occlusal Examination Instruments: Willis gauge, Mosquito forceps with Shim stock, Miller's forceps with thin blue and red articulating paper, College tweezers, Dental probe. Dental mirror (From left to right) by University of Aberdeen.

Instruments Required

The examination should be carried out using a systematic approach whilst assessing the following:

Extra-oral examination

1) Facial Appearance [26]

The facial symmetry of the patient should be observed.

The skeletal relationship of the patient should then be identified and noted.

The facial height of the patient should be considered and it should be noted where there may have been a loss.

2) Muscles

Begin by simply palpating the muscles concerned with the occlusion of the teeth. These muscles include the muscles of mastication and other muscles within the head and neck area, such as the supra-hyoid muscles. It is best to palpate the muscles simultaneously and bilaterally. [28] The temporalis, masseter, medial and lateral pterygoids, geniohyoid, mylohyoid and digastric muscles alongside the trapezius, posterior cervical muscles, occipitalis muscle and the sternocleidomastoid should all be checked for any signs of wasting or tenderness. [29] Temporomandibular dysfunction commonly presents with muscular tenderness, [25] but pain or palpable soreness associated with the muscles can also be linked to parafunctional activity.

3) TMJ

TMJ disorders can be detected through occlusal examination. Ask the patient to open and close whilst placing two fingers over the space of the TMJ. Opening of less than 35mm in the mandible is considered to be restricted and such restriction may be associated with intra-capsular changes within the joint. [28] Following this, ask the patient to move their jaw to the right and following this, to the left. Note any clicking, crepitus, pain or deviation. [25]

Intra-oral examination [26]

4) Maxillary / Mandibular Arch

Assess each arch and identify whether there are any signs of occlusal disharmony, overloading, tooth migration, wear, craze lines, cracking or mobility (not due to periodontal causes). [25] Abfraction, faceting and possible vertical enamel fracture lesions should also be noted if present. [30]

5) Contacts in ICP

Begin by assessing the incisor and molar relationship as described above. Similarly examine the overbite and overjet. An overbite of 3-5mm [2] and an overjet of 2-3mms are considered to be within the range of normal. [13]

To look at the ICP, articulating paper should be placed on the occlusal surface and the patient asked to bite together, which will mark their occlusal contacts. It is best to check these whilst the teeth are dry.

6) RCP

The patient may be guided into CR using one of the follow methods;

In some patients it may be difficult to guide the mandible into CR, for example in those with muscle tension, muscle splinting, occlusal disharmony or parafunctional habit. For these patients a Lucia Jig or deprogramming appliance can be constructed at chair-side.

Mark RCP tooth contacts using articulating paper, note the teeth which are contacting and identify whether this RCP position is causing problems related to the occlusion. For example if there is a heavy contact or interference in RCP this may be the cause of occlusal disturbance. It is important to be able to guide the patient into RCP, as a registration may need to be taken in this position particularly if the occlusion is being reorganised, the OVD is being changed or even just for diagnostic and treatment planning purposes.

7) RCP-ICP Slide

The patient should be supine and relaxed. They should be placed into RCP by the operator and then asked to bite together “normally”, this is moving them from RCP into their position of maximum intercuspation (ICP). Ask the patient to feel the slide and identify whether this is small or large. [25] The slide should be smooth and the direction should be recorded. [30] The operator should evaluate from both the side of the patient and the front of the patient, how far the mandible travels both forward and laterally (however this is difficult and it may be easier to observe by mounting casts onto an articulator). This can be done by observing the maxillary and mandibular incisors during the slide. [25] The RCP-ICP slide for most dentate patients tends to be roughly 1–2 mm in an anterior and upward direction. [30] A deflective RCP-ICP slide, can have some relation to an anterior thrust. An anterior thrust, which is likely to be associated with the anterior teeth or other teeth involved in guidance such as canine teeth, often causes the teeth to exhibit fremitus.

8) Protrusive Movements

The patient is asked to move their mandible forward from ICP. This is commonly around a distance of 8-10mm and would normally be until the lower incisors slide anterior to the incisal edges of the maxillary anteriors. Observe the contacts during this movement. Mark the contacts using coloured articulating paper alongside the ICP contacts, which should be in a different colour - any teeth providing guidance and any interferences should be noted. [25]

9) Lateral Excursions

The patient is also asked to move their lower jaw to one side. Lateral movements should be measured and measurements of 12mm are thought to be normal. [28] Both working side and non-working side should be observed during this movement. Record any teeth that are providing guidance during this movement and any interferences that are present (and the location of these). Smooth and unbroken contacts should be identified when these excursive movements are recorded [25]

10) OVD

If occlusal wear can be seen, a Willis gauge is used to measure the occlusal-vertical dimension and the resting vertical dimension of an individual.

Take a measurement by placing two reference points on the patients face, one under the nose (usually the columella) and one under the chin. Take one measurement whilst the patient is resting (teeth should not be contacting) and one with the patient biting together i.e. in ICP and take this measurement away from the resting measurement to give the freeway space. The normal freeway space is usually 2-4mm. [31]

Patients with considerable tooth wear may have lost occlusal vertical dimension (OVD). When restoring the dentition, it is important to be aware of the exact OVD the patient has and by how much you may be increasing this. Patient’s may not be able to adapt to a large increase in OVD and therefore this may have to be done in phases.

Summary

Table 1: Summary of key aspects of occlusal examination
Aspect of ExaminationWhat to look for
Facial appearanceThis involves assessing the face for symmetry and categorising the patient into the appropriate skeletal relationship.
MusculaturePalpate and ensure normal muscle mass with no signs of wasting.
Temporomandibular JointAny pain, clicking, crepitus or deviation should be noted and appropriate questions asked to find out more.
Maxillary and Mandibular ArchExamine each arch individually and note any signs of occlusal loading, faceting and microfractures within the teeth.
Intercuspal Position (ICP)Note overbite and overjet. Assess where the teeth contact in ICP and whether these contacts are stable or not.
Retruded Contact Position (RCP)Put the patient into their RCP using bimanual manipulation, or chin point guidance. Assess their RCP and if any problems in relation to the occlusion exist note these.
RCP-ICP SlideAssess both the quality and the quantity of the slide. The slide from RCP to ICP should be smooth and is usually about 1–2 mm in length, this should be confirmed during examination and any issues recorded.
Protrusive MovementAny teeth providing guidance should be noted. Similarly any interferences should be made note of.
Right Lateral ExcursionIt is important to examine which teeth the guidance is on and to note any interferences that can be identified on both working and non-working sides.
Left Lateral ExcursionIt is important to examine which teeth the guidance is on and to note any interferences that can be identified on both working and non-working sides.
Occlusal-vertical DimensionWhere necessary, measure the OVD i.e. in cases where there has been a loss of OVD or where interocclusal space is required or aesthetics are poor.

Clinical applications of occlusion

Occlusion is a fundamental concept in dentistry yet it is commonly overlooked as it's perceived as being not important or too difficult to teach and understand. Clinicians should have a sound understanding of the principles regarding occlusal harmony in order to be able to recognise and treat common problems associated with occlusal disharmony. Some of the advantages associated with a working knowledge of these include: [32]

Simple occlusal adjustment

Involves simply grinding down involved cusps or restorations and may be indicated after careful examination when:

Complex occlusal adjustment or reorganisation

May be required in more severe circumstances and some examples of these include:

Achieving a satisfactory occlusal reorganisation involves choosing a desired jaw relationship (either conforming to existing ICP or producing a new ICP coincident with CR), deciding on the intercuspal contacts (removing deflective contacts and adjusting shapes/inclines of teeth), adjusting excursive contacts (removing interferences) and aiming for a mutually protected occlusion. [25] This is an extremely complex process and entails a clinical occlusal examination as described above, along with detailed examination of mounted study casts and diagnostic wax-ups.

Mounted study casts

It is common practice to mount mandibular and maxillary casts (impressions are made of the teeth and poured in dental stone) in an articulator in ICP when constructing restorations that conform to the patient's existing occlusion. Casts mounted on an articulator in ICP are useful for diagnostic purposes or simple restorations, but where more extensive treatment is planned it is necessary to consider occlusal contacts relative to CR e.g. RCP -> ICP slide. Other situations a CR registration may be more appropriate than ICP include where there are plans to reorganise or adjust the existing occlusion (including changes to the occlusal vertical dimension). [25] In these circumstances, in order to accurately stimulate mandibular movement around CR (particularly opening and closing of the mouth), using a facebow transfer, the maxillary cast should be mounted in a semi-adjustable articulator and then the mandibular cast should be mounted using a CR registration. The patient's new occlusion is then arranged so that the new ICP occurs when patient is in CR.

Diagnostic wax-ups

Wax-ups are indicated where changes to the occlusion or aesthetics are planned. Diagnostic wax-ups are when changes are made to the shapes of the teeth by methodically adding wax to the articulated stone casts representing the patient's teeth. This can be done in order to demonstrate to the patient what the planned restorations will look like, but can also be invaluable when simulating different occlusal schemes, studying the functional occlusion as well as providing temporary coverage whilst the restoration is being constructed by the lab through use of a matrix. Once an established plan has been constructed using the wax-ups, these can be used as a tool to guide the desired outcome in the mouth and provide a useful communication tool with both the dental laboratory and the patient.

See also

Related Research Articles

<span class="mw-page-title-main">Temporomandibular joint</span> Joints connecting the jawbone to the skull

In anatomy, the temporomandibular joints (TMJ) are the two joints connecting the jawbone to the skull. It is a bilateral synovial articulation between the temporal bone of the skull above and the mandible below; it is from these bones that its name is derived. This joint is unique in that it is a bilateral joint that functions as one unit. Since the TMJ is connected to the mandible, the right and left joints must function together and therefore are not independent of each other.

<span class="mw-page-title-main">Malocclusion</span> Medical condition

In orthodontics, a malocclusion is a misalignment or incorrect relation between the teeth of the upper and lower dental arches when they approach each other as the jaws close. The English-language term dates from 1864; Edward Angle (1855-1930), the "father of modern orthodontics", popularised it. The word "malocclusion" derives from occlusion, and refers to the manner in which opposing teeth meet.

<span class="mw-page-title-main">Curve of Spee</span>

In anatomy, the Curve of Spee is defined as the curvature of the mandibular occlusal plane beginning at the canine and following the buccal cusps of the posterior teeth, continuing to the terminal molar. According to another definition the curve of Spee is an anatomic curvature of the occlusal alignment of the teeth, beginning at the tip of the lower incisor, following the buccal cusps of the natural premolars, and molars and continuing to the anterior border of the ramus. It is named for the German embryologist Ferdinand Graf von Spee (1855–1937), who was first to describe the anatomic relations of human teeth in the sagittal plane.

Dens evaginatus is a rare odontogenic developmental anomaly that is found in teeth where the outer surface appears to form an extra bump or cusp.

Dental anatomy is a field of anatomy dedicated to the study of human tooth structures. The development, appearance, and classification of teeth fall within its purview. Tooth formation begins before birth, and the teeth's eventual morphology is dictated during this time. Dental anatomy is also a taxonomical science: it is concerned with the naming of teeth and the structures of which they are made, this information serving a practical purpose in dental treatment.

<span class="mw-page-title-main">Dental radiography</span> X-ray imaging in dentistry

Dental radiographs, commonly known as X-rays, are radiographs used to diagnose hidden dental structures, malignant or benign masses, bone loss, and cavities.

In dentistry, centric relation is the mandibular jaw position in which the head of the condyle is situated as far anterior and superior as it possibly can within the mandibular fossa/glenoid fossa.

This is a list of definitions of commonly used terms of location and direction in dentistry. This set of terms provides orientation within the oral cavity, much as anatomical terms of location provide orientation throughout the body.

In dentistry, a mutually protected occlusion is an occlusal scheme in which the anterior teeth protect the posterior teeth, and vice versa.

<span class="mw-page-title-main">Overjet</span> Medical condition

Overjet is the extent of horizontal (anterior-posterior) overlap of the maxillary central incisors over the mandibular central incisors. In class II malocclusion the overjet is increased as the maxillary central incisors are protruded.

<span class="mw-page-title-main">Crossbite</span> Medical condition

Crossbite is a form of malocclusion where a tooth has a more buccal or lingual position than its corresponding antagonist tooth in the upper or lower dental arch. In other words, crossbite is a lateral misalignment of the dental arches.

The Dahl effect or Dahl concept is used in dentistry where a localized appliance or localized restoration is used to increase the available interocclusal space for restorations.

<span class="mw-page-title-main">Mandible</span> Lower jaw bone

In jawed vertebrates, the mandible, lower jaw, or jawbone is a bone that makes up the lower – and typically more mobile – component of the mouth.

Serial extraction is the planned extraction of certain deciduous teeth and specific permanent teeth in an orderly sequence and predetermined pattern to guide the erupting permanent teeth into a more favorable position.

Activator Appliance is an Orthodontics appliance that was developed by Viggo Andresen in 1908. This was one of the first functional appliances that was developed to correct functional jaw in the early 1900s. Activator appliance became the universal appliance that was used widely throughout Europe in the earlier part of the 20th century.

Intrusion is a movement in the field of orthodontics where a tooth is moved partially into the bone. Intrusion is done in orthodontics to correct an anterior deep bite or in some cases intrusion of the over-erupted posterior teeth with no opposing tooth. Intrusion can be done in many ways and consists of many different types. Intrusion, in orthodontic history, was initially defined as problematic in early 1900s and was known to cause periodontal effects such as root resorption and recession. However, in mid 1950s successful intrusion with light continuous forces was demonstrated. Charles J. Burstone defined intrusion to be "the apical movement of the geometric center of the root (centroid) in respect to the occlusal plane or plane based on the long axis of tooth".

Open bite is a type of orthodontic malocclusion which has been estimated to occur in 0.6% of the people in the United States. This type of malocclusion has no vertical overlap or contact between the anterior incisors. The term "open bite" was coined by Carevelli in 1842 as a distinct classification of malocclusion. Different authors have described the open bite in a variety of ways. Some authors have suggested that open bite often arises when overbite is less than the usual amount. Additionally, others have contended that open bite is identified by end-on incisal relationships. Lastly, some researchers have stated that a lack of incisal contact must be present to diagnose an open bite.

<span class="mw-page-title-main">Posselt's envelope of motion</span> The range of movement of the mandible

Posselt's envelope of motion or Posselt's envelope of movement refers to the range of motion of the lower jaw bone, or mandible.

Orthodontic indices are one of the tools that are available for orthodontists to grade and assess malocclusion. Orthodontic indices can be useful for an epidemiologist to analyse prevalence and severity of malocclusion in any population.

Occlusion according to The Glossary of Prosthodontic Terms Ninth Edition is defined as "the static relationship between the incising or masticating surfaces of the maxillary or mandibular teeth or tooth analogues".

References

  1. 1 2 Davies, S; Gray, R M J (2001-09-08). "Occlusion: What is occlusion?". British Dental Journal. 191 (5): 235–245. doi:10.1038/sj.bdj.4801151. ISSN   0007-0610. S2CID   1527778.
  2. 1 2 3 4 5 6 7 8 9 10 P., OKESON, JEFFREY (2019). Management of temporomandibular disorders and occlusion. MOSBY. ISBN   978-0323582100. OCLC   1049824448.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Atkinson, Martin E. (2013). Anatomy for dental students. Oxford University Press. ISBN   978-0-19-923446-2. OCLC   914774667.
  4. 1 2 Stoopler, E. T.; Sollecito, T. P. (2018). Gremillion, Henry A.; Klasser, Gary D. (eds.). Temporomandibular Disorders. Vol. 185. p. 324. doi:10.1007/978-3-319-57247-5. ISBN   978-3-319-57245-1. PMC   3589312 . PMID   23128277.{{cite book}}: |journal= ignored (help)
  5. 1 2 3 Iven., Klineberg (2015). Functional Occlusion in Restorative Dentistry and Prosthodontics. Eckert, Steven. Elsevier Health Sciences UK. ISBN   978-0723438465. OCLC   939865595.
  6. 1 2 3 4 author., Nelson, Stanley J. (2014-11-25). Wheeler's dental anatomy, physiology, and occlusion. Elsevier, Saunders. ISBN   9780323263238. OCLC   879604219.{{cite book}}: |last= has generic name (help)CS1 maint: multiple names: authors list (link)
  7. Thérèse., Welbury, Richard R.. Duggal, Monty S.. Hosey, Marie (2018-04-05). Paediatric dentistry. Oxford University Press. ISBN   978-0198789277. OCLC   1037154226.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 Salzmann, J.A. (June 1965). "The Angle classification as a parameter of malocclusion". American Journal of Orthodontics. 51 (6): 465–466. doi:10.1016/0002-9416(65)90243-5. ISSN   0002-9416. PMID   14287832.
  9. Institution., British Standards (1983). British standard glossary of dental terms = Glossaire des termes utilisés en art dentaire. British Standards Institution. OCLC   567637490.
  10. Birgit., Thilander (2017). Essential Orthodontics. John Wiley & Sons, Incorporated. ISBN   9781119165682. OCLC   990715482.
  11. Brook, Peter H.; Shaw, William C. (August 1989). "The development of an index of orthodontic treatment priority". European Journal of Orthodontics. 11 (3): 309–320. doi:10.1093/oxfordjournals.ejo.a035999. ISSN   1460-2210. PMID   2792220.
  12. 1 2 3 4 5 6 "The Glossary of Prosthodontic Terms". The Journal of Prosthetic Dentistry. 117 (5): C1–e105. May 2017. doi: 10.1016/j.prosdent.2016.12.001 . hdl:2027/mdp.39015007410742. PMID   28418832.
  13. 1 2 David., Ricketts (2014). Advanced Operative Dentistry : a Practical Approach. Elsevier Health Sciences. ISBN   9780702046971. OCLC   1048579292.
  14. 1 2 Ulf, Posselt (1952). Studies in the mobility of the human mandible. OCLC   252899547.
  15. Schuyler, Clyde H. (1935-07-01). "Fundamental Principles in the Correction of Occlusal Disharmony, Natural and Artificial *" . Journal of the American Dental Association. 22 (7): 1193–1202. doi:10.14219/jada.archive.1935.0188. ISSN   1048-6364.
  16. Stuart, Charles E.; Stallard, Harvey (March 1960). "Principles involved in restoring occlusion to natural teeth". The Journal of Prosthetic Dentistry. 10 (2): 304–313. doi:10.1016/0022-3913(60)90058-5. ISSN   0022-3913.
  17. 1 2 Schuyler, Clyde H. (November 1953). "Factors of occlusion applicable to restorative dentistry". The Journal of Prosthetic Dentistry. 3 (6): 772–782. doi:10.1016/0022-3913(53)90146-2. ISSN   0022-3913.
  18. 1 2 Dawson, Peter E. (1989). Evaluation, diagnosis, and treatment of occlusal problems. Mosby. OCLC   579943174.
  19. Maurice., GOLDMAN, Henry (1960). Periodontal Therapy. Second edition. [By H.M. Goldman, Saul Schluger, Lewis Fox, D. Walter Cohen.] St. Louis. OCLC   559001294.{{cite book}}: CS1 maint: multiple names: authors list (link)
  20. Monson, George S. (May 1920). "Occlusion as Applied to Crown and Bridge-Work". The Journal of the National Dental Association. 7 (5): 399–413. doi:10.14219/jada.archive.1920.0071. ISSN   0097-1901.
  21. Ramfjord, Sigurd P. (January 1961). "Bruxism, a clinical and electromyographic study". The Journal of the American Dental Association. 62 (1): 21–44. doi:10.14219/jada.archive.1961.0002. ISSN   0002-8177. PMID   13739329.
  22. 1 2 3 A., Shillingburg, Herbert T. Sather, David (2014-08-02). Fundamentals of fixed prosthodontics. Quintessence Pub. ISBN   9780867155174. OCLC   885208898.{{cite book}}: CS1 maint: multiple names: authors list (link)
  23. Whitsett, L. D.; Shillingburg, H. T.; Duncanson, M. G. (October 1974). "The non-working interference". Your Oklahoma Dental Association Journal. 65 (2): 5–7, 11. ISSN   0149-2594. PMID   4535999.
  24. Schaerer, Peter; Stallard, Richard E.; Zander, Helmut A. (May 1967). "Occlusal interferences and mastication: An electromyographic study". The Journal of Prosthetic Dentistry. 17 (5): 438–449. doi:10.1016/0022-3913(67)90141-2. ISSN   0022-3913. PMID   5228215.
  25. 1 2 3 4 5 6 7 8 9 10 11 Wassell, Robert; Naru, Amar; Steele, Jimmy; Nohl, Francis (2015). Applied occlusion (Second ed.). London. ISBN   9781850972778. OCLC   896855686.{{cite book}}: CS1 maint: location missing publisher (link)
  26. 1 2 "Step-by-step guide to your orthodontic journey". Orthodontics Australia. 2018-06-16. Retrieved 2020-09-13.
  27. Amos), Salzmann, J. A. (Jacob (1950). Principles of orthodontics. Lippincott. OCLC   429788429.{{cite book}}: CS1 maint: multiple names: authors list (link)
  28. 1 2 3 F., Rosenstiel, Stephen (2015-09-18). Contemporary fixed prosthodontics. Land, Martin F.,, Fujimoto, Junhei (Fifth ed.). St. Louis, Missouri. ISBN   9780323080118. OCLC   911834387.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  29. Meyer, Roger A. (1990), Walker, H. Kenneth; Hall, W. Dallas; Hurst, J. Willis (eds.), "The Temporomandibular Joint Examination", Clinical Methods: The History, Physical, and Laboratory Examinations (3rd ed.), Butterworths, ISBN   9780409900774, PMID   21250114 , retrieved 2019-02-24
  30. 1 2 3 Sonstige, Becker, Irwin M. 1943- (2011). Comprehensive occlusal concepts in clinical practice. Wiley-Blackwell. ISBN   9780813805849. OCLC   1075768288.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  31. Banerjee, Avijit (2011). Pickard's manual of operative dentistry. Oxford University Press. ISBN   978-0199579150. OCLC   1058348763.
  32. Dawson, Peter E. (2007). Functional occlusion : from TMJ to smile design. Mosby. ISBN   978-0323033718. OCLC   427468847.