Bottom water

Last updated

Bottom water is the lowermost water mass in a water body, by its bottom, with distinct characteristics, in terms of physics, chemistry, and ecology.

Contents

Oceanography

Bottom water consists of cold, dense water near the ocean floor. This water is characterized by low salinity and nutrient content. Generally, low salinity from seasonal ice melt and freshwater river output characterizes bottom water produced in the Antarctic. However, during colder months, the formation of sea ice is a crucial process that raises the salinity of bottom water through brine rejection. As saltwater freezes, salt is expelled from the ice into the surrounding water. The oxygen content in bottom water is high due to ocean circulation. In the Antarctic, salty and cold surface water sinks to lower depths due to its high density. As the surface water sinks, it carries oxygen from the surface with it and will spend an enormous amount of time circulating across the seafloor of ocean basins. Oxygen-rich water moving throughout the bottom layer of the ocean is an important source for the respiration of benthic organisms. Bottom waters flow very slowly, driven mainly by slope topography and differences in temperature and salinity, especially compared to wind-driven surface ocean currents. [1]

Antarctic Bottom Water is the most dominant source of bottom water in southern parts of the Pacific Ocean, Indian Ocean, and North Atlantic Ocean. Antarctic Bottom Water sits underneath the North Atlantic Deep Water due to its colder temperature and higher density. Salinity can be used to compare the movement between fresh Antarctic Bottom Water (roughly 34.7 psu) and saltier North Atlantic Deep Water. Antarctic Bottom Water can be distinguished from other intermediate and deep water masses by its cold, low nutrient, high oxygen, and low salinity content. [2]

The bottom water of the Arctic Ocean is more isolated, due to the topography of the Arctic Ocean floor and the surrounding Arctic shelves. Deep Western Boundary Currents carry the Antarctic Bottom Water northward in the South Atlantic Ocean. The Antarctic Bottom Water shifts east when it reaches the equator, thus turning it into an eastern boundary current along the mid-Atlantic Ridge. The movement of the Antarctic Bottom Water across isopycnals is limited by deep sills. Sills consist of shallow areas on the seafloor that prevent the movement of water across basins. [3]

Climate Change and Antarctic Bottom Water

Changes in the characterization of Antarctic Bottom Water have been monitored in the Southern Ocean. The Antarctic Bottom Water’s temperature has increased and the salinity continues to freshen. Since the water mass is heating up and getting fresher, the density is significantly lowering. This has to do with Global Warming heating up the atmosphere and the ocean resulting in sea ice melt, sea level rise, and ocean acidification. Ventilation has also slowed down as a result of global warming. Antarctic Bottom Water has such high oxygen content that it is able to contribute to the ventilation of the deep ocean by acting as a circulatory system. Long-term shifts in temperature increase have slowed the rate of ocean ventilation. As the atmosphere warms, that decreases the formation of sea ice in Antarctica, thus decreasing the density of the surrounding water. The decreased density leads to a slower rate of convection ultimately slowing down deep water formation processes. Essential processes like upwelling begin to digress. Without upwelling, cold, nutrient-rich water can’t be recycled to the surface to create areas of high productivity. [4] [5]

Estuaries

Bottom water by an estuary of a river discharging into a saline body exhibits peculiar transport of mud. Due to fresh/saline water intermixing by the estuary, a horizontal isohale gradient is created, with lower salinity levels upstream, which generates the upstream flow of the bottom water. Mud particles carried by river begin settling down as the current and turbulence decrease. When the particles nearly reach the floor, they are carried back to the head of estuary to accumulate at the point where the salinity of the surface and bottom waters become comparable and the bottom flow decreases. This process results is a distinguished pile of mud at this point. [6]

Lake hydrography

Bottom water of lakes may feature lower level of oxygen, to the point of completely vanished dissolved oxygen (i.e., becoming anaerobic), and higher levels of chlorinity and organic-induced acidity. In many lakes, especially in the zones of continental climate, summer heating and winter cooling create strong vertical temperature gradients which oppose water intermixing, resulting in the periods of summer and winter thermal lake stratification . They are intervened by bottom water overturning, which happens in autumn (autumn overturn) and in spring (spring overturn) due to equalizing of temperature gradients and the resulting easier intermixing by wind and other sources of turbulence. [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">North Atlantic Deep Water</span> Deep water mass formed in the North Atlantic Ocean

North Atlantic Deep Water (NADW) is a deep water mass formed in the North Atlantic Ocean. Thermohaline circulation of the world's oceans involves the flow of warm surface waters from the southern hemisphere into the North Atlantic. Water flowing northward becomes modified through evaporation and mixing with other water masses, leading to increased salinity. When this water reaches the North Atlantic it cools and sinks through convection, due to its decreased temperature and increased salinity resulting in increased density. NADW is the outflow of this thick deep layer, which can be detected by its high salinity, high oxygen content, nutrient minima, high 14C/12C, and chlorofluorocarbons (CFCs).

<span class="mw-page-title-main">Downwelling</span> Process of accumulation and sinking of higher density material beneath lower density material

Downwelling is the process of accumulation and sinking of higher density material beneath lower density material, such as cold or saline water beneath warmer or fresher water or cold air beneath warm air. It is the sinking limb of a convection cell. Upwelling is the opposite process, and together, these two forces are responsible in the oceans for the thermohaline circulation. The sinking of the cold lithosphere at subduction zones is another example of downwelling in plate tectonics.

<span class="mw-page-title-main">Physical oceanography</span> Study of physical conditions and physical processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

<span class="mw-page-title-main">Thermohaline circulation</span> Part of large-scale ocean circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

<span class="mw-page-title-main">Thermocline</span> Thermal layer in a body of water

A thermocline is a distinct layer based on temperature within a large body of fluid with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

<span class="mw-page-title-main">Water mass</span> Body of water with common formation history

An oceanographic water mass is an identifiable body of water with a common formation history which has physical properties distinct from surrounding water. Properties include temperature, salinity, chemical - isotopic ratios, and other physical quantities which are conservative flow tracers. Water mass is also identified by its non-conservative flow tracers such as silicate, nitrate, oxygen, and phosphate.

<span class="mw-page-title-main">East Greenland Current</span> Current from Fram Strait to Cape Farewell off the eastern coat of Greenland

The East Greenland Current (EGC) is a cold, low-salinity current that extends from Fram Strait (~80N) to Cape Farewell (~60N). The current is located off the eastern coast of Greenland along the Greenland continental margin. The current cuts through the Nordic Seas and through the Denmark Strait. The current is of major importance because it directly connects the Arctic to the Northern Atlantic, it is a major contributor to sea ice export out of the Arctic, and it is a major freshwater sink for the Arctic.

<span class="mw-page-title-main">Labrador Current</span> Cold current in the Atlantic ocean along the coasts of Labrador, Newfoundland and Nova Scotia

The Labrador Current is a cold current in the North Atlantic Ocean which flows from the Arctic Ocean south along the coast of Labrador and passes around Newfoundland, continuing south along the east coast of Canada near Nova Scotia. Near Nova Scotia, this cold water current meets the warm northward moving Gulf Stream. The combination of these two currents produces heavy fogs and has also created one of the richest fishing grounds in the world.

A pycnocline is the cline or layer where the density gradient is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes can be connected to the transport of heat, salt, and nutrients through the ocean, and the pycnocline diffusion controls upwelling.

<span class="mw-page-title-main">Brazil Current</span> Warm current that flows south along the Brazilian south coast to the mouth of the Río de la Plata

The Brazil Current is a warm water current that flows south along the Brazilian south coast to the mouth of the Río de la Plata.

A Nansen bottle is a device for obtaining samples of water at a specific depth. It was designed in 1894 by Fridtjof Nansen and further developed by Shale Niskin in 1966.

Isopycnals are layers within the ocean that are stratified based on their densities and can be shown as a line connecting points of a specific density or potential density on a graph. Isopycnals are often displayed graphically to help visualize "layers" of the water in the ocean or gases in the atmosphere in a similar manner to how contour lines are used in topographic maps to help visualize topography.

<span class="mw-page-title-main">Antarctic bottom water</span> Cold, dense, water mass originating in the Southern Ocean surrounding Antarctica

The Antarctic bottom water (AABW) is a type of water mass in the Southern Ocean surrounding Antarctica with temperatures ranging from −0.8 to 2 °C (35 °F) and salinities from 34.6 to 34.7 psu. As the densest water mass of the oceans, AABW is found to occupy the depth range below 4000 m of all ocean basins that have a connection to the Southern Ocean at that level.

<span class="mw-page-title-main">Weddell Gyre</span> One of two gyres within the Southern Ocean

The Weddell Gyre is one of the two gyres that exist within the Southern Ocean. The gyre is formed by interactions between the Antarctic Circumpolar Current (ACC) and the Antarctic Continental Shelf. The gyre is located in the Weddell Sea, and rotates clockwise. South of the ACC and spreading northeast from the Antarctic Peninsula, the gyre is an extended large cyclone. Where the northeastern end ends at 30°E, which is marked by the southward turn of the ACC, the northern part of the gyre spreads over the Southern Scotia Sea and goes northward to the South Sandwich Arc. Axis of the gyre is over the southern flanks of the South Scotia, America-Antarctic, and Southwest Indian Ridges. In the southern part of the gyre, the westward return flow is about 66 sverdrup (Sv), while in the northern rim current, there is an eastward flow of 61 Sv.

<span class="mw-page-title-main">Ocean</span> Body of salt water covering the majority of Earth

The ocean is the body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the world ocean is conventionally divided. Separate names are used to identify five different areas of the ocean: Pacific, Atlantic, Indian, Southern, and Arctic. Seawater covers approximately 361,000,000 km2 (139,000,000 sq mi) of the planet. The ocean is the principal component of Earth's hydrosphere, and therefore integral to life on Earth. Acting as a huge heat reservoir, the ocean influences climate and weather patterns, the carbon cycle, and the water cycle.

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.

Antarctic Intermediate Water (AAIW) is a cold, relatively low salinity water mass found mostly at intermediate depths in the Southern Ocean. The AAIW is formed at the ocean surface in the Antarctic Convergence zone or more commonly called the Antarctic Polar Front zone. This convergence zone is normally located between 50°S and 60°S, hence this is where almost all of the AAIW is formed.

<span class="mw-page-title-main">Circumpolar deep water</span> Water mass in the Pacific and Indian oceans formed by mixing of other water masses in the region

Circumpolar Deep Water (CDW) is a designation given to the water mass in the Pacific and Indian oceans that is a mixing of other water masses in the region. It is characteristically warmer and saltier than the surrounding water masses, causing CDW to contribute to the melting of ice shelves in the Antarctic region.

Brine rejection is a process that occurs when salty water freezes. The salts do not fit in the crystal structure of water ice, so the salt is expelled.

<span class="mw-page-title-main">Nordic Seas</span>

The Nordic Seas are located north of Iceland and south of Svalbard. They have also been defined as the region located north of the Greenland-Scotland Ridge and south of the Fram Strait-Spitsbergen-Norway intersection. Known to connect the North Pacific and the North Atlantic waters, this region is also known as having some of the densest waters, creating the densest region found in the North Atlantic Deep Water. The deepest waters of the Arctic Ocean are connected to the worlds other oceans through Nordic Seas and Fram Strait. There are three seas within the Nordic Sea: Greenland Sea, Norwegian Sea, and Iceland Sea. The Nordic Seas only make up about 0.75% of the World's Oceans. This region is known as having diverse features in such a small topographic area, such as the mid oceanic ridge systems. Some locations have shallow shelves, while others have deep slopes and basins. This region, because of the atmosphere-ocean transfer of energy and gases, has varying seasonal climate. During the winter, sea ice is formed in the western and northern regions of the Nordic Seas, whereas during the summer months, the majority of the region remains free of ice.

References

  1. Descriptive Physical Oceanography, Talley, Pickard, Emery, and Swift, 6th edition. Elsiver Press (2011), ISBN   978-0-7506-4552-2
  2. Descriptive Physical Oceanography, Talley, Pickard, Emery, and Swift, 6th edition. Elsiver Press (2011), ISBN   978-0-7506-4552-2
  3. Descriptive Physical Oceanography, Talley, Pickard, Emery, and Swift, 6th edition. Elsiver Press (2011), ISBN   978-0-7506-4552-2
  4. Descriptive Physical Oceanography, Talley, Pickard, Emery, and Swift, 6th edition. Elsiver Press (2011), ISBN   978-0-7506-4552-2
  5. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/antarctic-bottom-water
  6. David E. Alexander, Rhodes Whitmore Fairbridge (eds.) (1999) "Encyclopedia of Environmental Science", ISBN   0-412-74050-8, p.238
  7. Milton Joseph Rosenau, George Chandler Whipple, John William Trask, Thomas William Salmon (1921) "Preventive Medicine and Hygiene" , p. 1031
  8. "Lakes: Physical Processes"