Bowser (tanker)

Last updated

Water tank truck in Iraq Volvo water tank truck in Iraq.JPEG
Water tank truck in Iraq

A bowser is a tanker of various kinds, named after Sylvanus Bowser who is credited with inventing the automobile fuel pump.

Contents

Water

The term bowser is used by water companies in the United Kingdom to refer to mobile water tanks deployed to distribute fresh water in emergencies where the normal system of piped distribution has broken down or is insufficient. [1]

Fuel

A C-5 Galaxy cargo plane is re-fuelled by a KrAZ-258/TZ-22 tanker at Manas International Airport KrAZ-258 airport tank truck in Kyrgyzstan.JPEG
A C-5 Galaxy cargo plane is re-fuelled by a KrAZ-258/TZ-22 tanker at Manas International Airport

Bowser also describes a fuel tanker used to deliver fuel to aircraft at airports or airfields. [2] The term also describes refuelling boats that supply seaplanes, army fuel tankers used for combat resupply, and vehicles that fill heavy construction equipment such as hydraulic excavators and bulldozers. Even aircraft have been described as "flying fuel bowsers" when configured to ferry fuel to support a forward operation. [3]

The related verb, "bowsing", is used in the fuel distribution industry to refer to the practice of customers of one fuel distributor to be able to collect fuel from a depot (including retail stations) of a second fuel distributor, at the prices of the first distributor. As such, it is a method of mutual distribution, improving fuel access for customers while reducing the main costs of each distributor. Being a commercial service, it normally applies to DERV (Diesel Engined Road Vehicle ]) rather than petrol (gasoline), but can also include new energy solutions, for example, a Hydrogen Bowser which can be used to refuel gaseous hydrogen to mobile plant and machinery [4] .

Other fluids

At the former nuclear research facility at Dounreay in the far north of Scotland, the word bowser is used to describe various moveable (but not wheeled) vessels that contain alkali metals (sodium or NaK), protected from oxidation by an inert gas. The word may also have been in use at the Atomic Energy Authority's (now UKAEA's) southern sites.

Related Research Articles

<span class="mw-page-title-main">Engine</span> Machine that converts one or more forms of energy into mechanical energy (of motion)

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

<span class="mw-page-title-main">Fuel cell</span> Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

<span class="mw-page-title-main">Hydrogen vehicle</span> Vehicle that uses hydrogen fuel for motive power

A hydrogen vehicle is a vehicle that uses hydrogen to move. Hydrogen vehicles include some road vehicles, rail vehicles, space rockets, forklifts, ships and aircraft. Motive power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by hydrogen internal combustion.

<span class="mw-page-title-main">Fuel efficiency</span> Form of thermal efficiency

Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous energy profile. Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.

<span class="mw-page-title-main">Aviation fuel</span> Fuel used to power aircraft

Aviation fuels are petroleum-based fuels, or petroleum and synthetic fuel blends, used to power aircraft. They have more stringent requirements than fuels used for ground use, such as heating and road transport, and contain additives to enhance or maintain properties important to fuel performance or handling. They are kerosene-based for gas turbine-powered aircraft. Piston-engined aircraft use leaded gasoline and those with diesel engines may use jet fuel (kerosene). By 2012, all aircraft operated by the U.S. Air Force had been certified to use a 50-50 blend of kerosene and synthetic fuel derived from coal or natural gas as a way of stabilizing the cost of fuel.

<span class="mw-page-title-main">Hydrogen economy</span> Using hydrogen to decarbonize more sectors

The hydrogen economy is an umbrella term for the roles hydrogen can play alongside low-carbon electricity to reduce emissions of greenhouse gases. The aim is to reduce emissions where cheaper and more energy-efficient clean solutions are not available. In this context, hydrogen economy encompasses the production of hydrogen and the use of hydrogen in ways that contribute to phasing-out fossil fuels and limiting climate change.

<span class="mw-page-title-main">Natural gas vehicle</span> Vehicle powered by natural gas

A natural gas vehicle (NGV) utilizes compressed natural gas (CNG) or liquefied natural gas (LNG) as an alternative fuel source. Distinguished from autogas vehicles fueled by liquefied petroleum gas (LPG), NGVs rely on methane combustion, resulting in cleaner emissions due to the removal of contaminants from the natural gas source.

<span class="mw-page-title-main">Direct methanol fuel cell</span> Type of fuel cell

Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all environmental conditions.

<span class="mw-page-title-main">Fuel cell vehicle</span> Vehicle that uses a fuel cell to power its electric motor

A fuel cell vehicle (FCV) or fuel cell electric vehicle (FCEV) is an electric vehicle that uses a fuel cell, sometimes in combination with a small battery or supercapacitor, to power its onboard electric motor. Fuel cells in vehicles generate electricity generally using oxygen from the air and compressed hydrogen. Most fuel cell vehicles are classified as zero-emissions vehicles. As compared with internal combustion vehicles, hydrogen vehicles centralize pollutants at the site of the hydrogen production, where hydrogen is typically derived from reformed natural gas. Transporting and storing hydrogen may also create pollutants. Fuel cells have been used in various kinds of vehicles including forklifts, especially in indoor applications where their clean emissions are important to air quality, and in space applications. Fuel cells are being developed and tested in trucks, buses, boats, ships, motorcycles and bicycles, among other kinds of vehicles.

<span class="mw-page-title-main">Methanol economy</span> Economic theory

The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy, although these concepts are not exclusive. Methanol can be produced from a variety of sources including fossil fuels as well as agricultural products and municipal waste, wood and varied biomass. It can also be made from chemical recycling of carbon dioxide.

<span class="mw-page-title-main">Tank truck</span> Motor vehicle designed to carry liquefied loads, dry bulk cargo or gases on roads

A tank truck, gas truck, fuel truck, or tanker truck or tanker is a motor vehicle designed to carry liquids or gases on roads. The largest such vehicles are similar to railroad tank cars, which are also designed to carry liquid loads. Many variants exist due to the wide variety of liquids that can be transported. Tank trucks tend to be large; they may be insulated or non-insulated; pressurized or non-pressurized; and designed for single or multiple loads. Some are semi-trailer trucks. They are difficult to drive and highly susceptible to rollover due to their high center of gravity, and potentially the free surface effect of liquids sloshing in a partially filled tank.

<span class="mw-page-title-main">World Kinect Corporation</span> International American-based energy services corporation

World Kinect Corporation, formerly known as World Fuel Services Corporation, is an energy, commodities, and services company based in Doral, Florida. The company ranked No. 70 in the 2022 Fortune 500 list of the largest United States corporations. WKC focuses on the marketing, trading, and financing of aviation, marine, building, and ground transportation energy commodities and related services. As of 2013, WKC also operates in natural gas and power.

<span class="mw-page-title-main">Ground support equipment</span> Equipment for servicing aircraft between flights

Ground support equipment (GSE) is the support equipment found at an airport, usually on the apron, the servicing area by the terminal. This equipment is used to service the aircraft between flights. As the name suggests, ground support equipment is there to support the operations of aircraft whilst on the ground. The role of this equipment generally involves ground power operations, aircraft mobility, and cargo/passenger loading operations.

Fuel-management systems are used to maintain, control and monitor fuel consumption and stock in any type of industry that uses transport, including rail, road, water and air, as a means of business. Fuel-management systems are designed to effectively measure and manage the use of fuel within the transportation and construction industries. They are typically used for fleets of vehicles, including railway vehicles and aircraft, as well as any vehicle that requires fuel to operate. They employ various methods and technologies to monitor and track fuel inventories, fuel purchases and fuel dispensed. This information can be then stored in computerized systems and reports generated with data to inform management practices. Online fuel management is provided through the use of web portals to provide detailed fueling data, usually vis a vis the back end of an automated fuel-management system. This enables consumption control, cost analysis and tax accounting for fuel purchases.

The Honda FCX is a family of hydrogen fuel cell automobiles manufactured by Honda.

<span class="mw-page-title-main">Hydrogen infrastructure</span>

A hydrogen infrastructure is the infrastructure of hydrogen pipeline transport, points of hydrogen production and hydrogen stations for distribution as well as the sale of hydrogen fuel, and thus a crucial prerequisite before a successful commercialization of fuel cell technology.

<span class="mw-page-title-main">Hydrogen train</span> Train transporting or using hydrogen

In transportation, the original (2003) generic term "hydrail" includes hydrogen trains, zero-emission multiple units, or ZEMUs — generic terms describing rail vehicles, large or small, which use on-board hydrogen fuel as a source of energy to power the traction motors, or the auxiliaries, or both. Hydrail vehicles use the chemical energy of hydrogen for propulsion, either by burning hydrogen in a hydrogen internal combustion engine, or by reacting hydrogen with oxygen in a fuel cell to run electric motors, as the hydrogen fuel cell train. Widespread use of hydrogen for fueling rail transportation is a basic element of the proposed hydrogen economy. The term has been used by research scholars and technicians around the world.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

<span class="mw-page-title-main">United States hydrogen policy</span>

The principle of a fuel cell was discovered by Christian Friedrich Schönbein in 1838, and the first fuel cell was constructed by Sir William Robert Grove in 1839. The fuel cells made at this time were most similar to today's phosphoric acid fuel cells. Most hydrogen fuel cells today are of the proton exchange membrane (PEM) type. A PEM converts the chemical energy released during the electrochemical reaction of hydrogen and oxygen into electrical energy. The Hydrogen Research, Development, and Demonstration Act of 1990 and Energy Policy Act of 1992 were the first national legislative articles that called for large-scale hydrogen demonstration, development, and research programs. A five-year program was conducted that investigated the production of hydrogen from renewable energy sources and the feasibility of existing natural gas pipelines to carry hydrogen. It also called for the research into hydrogen storage systems for electric vehicles and the development of fuel cells suitable to power an electric motor vehicle.

<span class="mw-page-title-main">Gasoline pump</span> Machine at a filling station that is used to pump fuels

A gasoline pump or fuel dispenser is a machine at a filling station that is used to pump gasoline (petrol), diesel, or other types of liquid fuel into vehicles. Gasoline pumps are also known as bowsers or petrol bowsers, petrol pumps, or gas pumps.

References

  1. "Flood Bowser Locations". Archived from the original on August 11, 2017. Retrieved December 20, 2019.
  2. Mark Gwynn (October 2005). "When people become words" (PDF). Ozwords. Australian National Dictionary Centre. Archived from the original (PDF) on April 9, 2011. Retrieved July 24, 2013.
  3. Caddick-Adams, Peter (November 6, 2014). Snow and Steel: Battle of the Bulge 1944-45. Random House. ISBN   9781409052272.
  4. "H35 Hydrogen Bowser - Mobile Hydrogen Storage and Refuelling System". Commercial Fuel Solutions. Retrieved October 7, 2024.