A braid-breaker is a filter that prevents television interference (TVI). In many cases, TVI is caused by a high field strength of a nearby high frequency (HF) transmitter, the aerial down lead plugged into the back of the TV acts as a longwire antenna or as a simple vertical element. The radio frequency (RF) current flowing through the tuner of the TV tends to generate harmonics which then spoil the viewing.
The braid breaker works by preventing RF signals picked up on the outside flowing into the TV set, while passing RF inside the coax from the antenna.
Designs for diminishing unwanted signals are based on two types of filters: a “choke” filter which blocks signals in the electrical mode most interference uses, and filters that selectively admit or impede signals depending on the signal frequency.
Further, carefully chosen combinations of filters of either one type or both types multiply each other's effects, so that even if only slightly different, two filters are more effective than a single filter, or either filter alone.
Ferrite ring chokes work by presenting a high impedance to signals traveling along the braid only, but passes through differential-mode ("balanced") currents unchanged. The wanted signal is in differential mode with an equal and opposite current flowing in the braid to that in the cable core. The alternating current in the braid is impeded by the magnetic fields created in the ferrite, effectively placing a large inductance in series with the braid. The currents from the wanted signal, however, produce equal and opposite magnetic flux in the ferrite which cancel out.
The device is called a "choke" because the ferrite in effect "chokes off" the signal path for interference.
The other type of filters used are based on frequency: Below their operating frequency limit, inductors (coils) impede signals at higher frequencies more, and admit low frequencies, whereas capacitors do the opposite: capacitors admit high frequencies but impede low frequencies. These can be played-off against each other to impede or admit signals based on frequency.
A simple design for a high-pass filter consists of two 4.7 pF ceramic capacitors and two simple air-core inductor coils (4 turns of 20 AWG copper wire wound using a 6 mm drill bit as a form). The design is a symmetric network: The line is cut and the coils are connected from the braid to the core of the coaxial cable ends, while the capacitors bridge the cut, one capacitor connecting core-to-core and the other reconnecting the cut outer shield braids.
As an extra precaution, a 1.5 MΩ resistor is wired in parallel with the capacitor connecting the shields. The resistor acts as a “slow leak” on the ground wire that prevents buildup of static electricity on the TV aerial, but is too high a resistance to pass a signal carried along the cable, which operates near 72 Ω.
The impedance of the capacitors is very large for shortwave signals, below 50 MHz, but for UHF TV signals above 450 MHz their impedance is very small. In the opposite sense, the impedance of the coils connecting the inner and outer wires at the lower frequencies is very small, while for the wanted UHF signals the coils have a very high impedance. Hence the network does the following:
An even better option is to use both a choke and a high-pass filter, since the filter described above may not be as effective for common-mode currents, which the choke will selectively remove.
An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil, spiral or helix. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.
Coaxial cable, or coax is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.
A balun is an electrical device that converts between a balanced signal and an unbalanced signal. A balun can take many forms and may include devices that also transform impedances but need not do so. Transformer baluns can also be used to connect lines of differing impedance. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than ignoring, common mode signals.
An antenna tuner is a device that is inserted between a radio transmitter and its antenna; when properly adjusted (tuned) it improves power transfer by matching the impedance of the radio to the impedance of the antenna, as it appears end of the feedline connected to the antenna tuner, with the other end connecting to the antenna.
In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This can be caused, for example, in a signal circuit referenced to ground, if enough current is flowing in the ground to produce a voltage drop and cause two ground points to be at different potentials.
A ferrite bead is a type of choke that suppresses high-frequency electronic noise in electronic circuits.
Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.
A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that is usually fed by a balanced source or feeding a balanced load. Within this physical description there are two distinct antenna types:
In electronics, a choke is an inductor used to block higher-frequency alternating currents while passing direct current (DC) and lower-frequencies alternating current (AC) in an electrical circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core, although some consist of a doughnut-shaped "bead" of ferrite material strung on a wire. The choke's impedance increases with frequency. Its low electrical resistance passes both AC and DC with little power loss, but its reactance limits the amount of AC passed.
A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.
Most high power transmitter amplifiers are of valve construction because of the high power required.
An EMC problem occurs when one piece of electronic equipment or an electromagnetic system is adversely affected by the operation of another. One example might be breakthrough by the high field strengths produced by a nearby radio transmitter. EMC problems are not always due to defects in the transmitter, and so do not necessarily require improvements in the radio transmitter design, such as reducing its radiated harmonics. It may be that the immunity of the affected equipment is poor due to inadequate shielding, or filtering of sensitive inputs. EMC problems can have a range of effects on equipment, and there are ways to mitigate or eliminate them in practice. Effective EMC mitigation techniques may differ by the type of equipment that malfunctions, and by the nature of the strong radio frequency field.
A bias tee is a three-port network used for setting the DC bias point of some electronic components without disturbing other components. The bias tee is a diplexer. The low-frequency port is used to set the bias; the high-frequency port passes the radio-frequency signals but blocks the biasing levels; the combined port connects to the device, which sees both the bias and RF. It is called a tee because the 3 ports are often arranged in the shape of a T.
In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity. Because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies, and ferrite loopstick antennas for AM radio receivers.
A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.
A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.
Sheath current filters are electronic components that can prevent noise signals travelling in the sheath of sheathed cables, which can cause interference. Using sheath current filters, ground loops causing mains hum and high frequency common-mode signals can be prevented.
A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.