Branch retinal vein occlusion

Last updated
Branch retinal vein occlusion
Branch retinal vein occlusion.jpg
Branch retinal vein occlusion
Specialty Neurology   OOjs UI icon edit-ltr-progressive.svg

Branch retinal vein occlusion is a common retinal vascular disease of the elderly. It is caused by the occlusion of one of the branches of central retinal vein. [1]

Contents

Signs and symptoms

Patients with branch retinal vein occlusion usually have a sudden onset of blurred vision or a central visual field defect. The eye examination findings of acute branch retinal vein occlusion include superficial hemorrhages, retinal edema, and often cotton-wool spots in a sector of retina drained by the affected vein. The obstructed vein is dilated and tortuous.

The quadrant most commonly affected is the superotemporal (63%).

Retinal neovascularization occurs in 20% of cases within the first 6–12 months of occlusion and depends on the area of retinal nonperfusion. Neovascularization is more likely to occur if more than five disc diameters of nonperfusion are present and vitreous hemorrhage can ensue. [2]

Causes

Diagnosis

Branch retinal vein occlusion revealed by laser Doppler imaging through flow alteration in the upper right branch artery. Branch retinal vein occlusion revealed by laser Doppler imaging.gif
Branch retinal vein occlusion revealed by laser Doppler imaging through flow alteration in the upper right branch artery.

The diagnosis of branch retinal vein occlusion is made clinically by finding retinal hemorrhages in the distribution of an obstructed retinal vein.

Treatment

Several options exist for the treatment of branch retinal vein occlusion. These treatments aim for the two of the most significant complications, namely macular edema and neovascularization. [1]

Prognosis

In general, branch retinal vein occlusion has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final visual acuity of 20/40 or better even without any treatment. With time the dramatic picture of an acute branch retinal vein occlusion becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.

Epidemiology

See also

References

  1. 1 2 "Retina and vitreous". Basic and clinical science course. American Academy of Ophthalmology. 2011–2012. pp. 150–154. ISBN   978-1615251193.
  2. Yanoff M, Duker JS (2009). Ophthalmology (3rd ed.). Mosby Elsevier. ISBN   9780323043328.
  3. Puyo, L., M. Paques, M. Fink, J-A. Sahel, and M. Atlan. "In vivo laser Doppler holography of the human retina." Biomedical optics express 9, no. 9 (2018): 4113-4129.
  4. Lam FC, Chia SN, Lee RM (May 2015). "Macular grid laser photocoagulation for branch retinal vein occlusion". The Cochrane Database of Systematic Reviews (5): CD008732. doi:10.1002/14651858.cd008732.pub2. PMC   10879914 . PMID   25961835.
  5. Scott IU, Ip MS, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, et al. (September 2009). "A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6". Archives of Ophthalmology. 127 (9): 1115–28. doi:10.1001/archophthalmol.2009.233. PMC   2806600 . PMID   19752420.
  6. Haller JA, Bandello F, Belfort R, Blumenkranz MS, Gillies M, Heier J, et al. (December 2011). "Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results". Ophthalmology. 118 (12): 2453–60. doi:10.1016/j.ophtha.2011.05.014. PMID   21764136.
  7. Shalchi Z, Mahroo O, Bunce C, Mitry D (July 2020). "Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion". The Cochrane Database of Systematic Reviews. 2020 (7): CD009510. doi:10.1002/14651858.cd009510.pub3. PMC   7388176 . PMID   32633861.
  8. Karia N (July 2010). "Retinal vein occlusion: pathophysiology and treatment options". Clinical Ophthalmology. 4: 809–16. doi: 10.2147/opth.s7631 . PMC   2915868 . PMID   20689798.
  9. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. (February 2010). "The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia". Ophthalmology. 117 (2): 313–9.e1. doi:10.1016/j.ophtha.2009.07.017. PMC   2945292 . PMID   20022117.